

H2020 Work Programme

D2.6- SCENARIO DEFINITION Lead Partner: Fundación CARTIF (CAR)

Date: 03/11/2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097. The content of publication is the sole responsibility of the author(s). The European Commission or its services cannot be held responsible for any use that may be made of the information it contains.

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page 1 of 78

Project title Supporting new Oppo	ortunities for Waste Heat And	l cold valorisation	Towards EU decarbonization
Project acronym	SO WHAT	Start / Duration	June 2019 (36 months)
Coordinator	Rina Consulting S.p.A. – RI	NA-C	
Website	www.sowhatproject.eu		

Deliverable detai	Deliverable details					
Number	D2.6					
Title	Scenario Definition	Scenario Definition				
Work Package	2					
Dissemination level ¹	PU = Public		PU = Public	PU = Public		
Due date (M)	M15-31.08.2020	Subr	mission date (M)	03/11/2020		
Deliverable responsible	Fundación CARTIF -	- CAR				

1

PU = Public CO = Confidential, only for members of the consortium (including Commission Services)

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page **2** of **78**

	Beneficiary
Deliverable leader	Susana María Gutiérrez Caballero (CAR)
Contributing Author(s)	Susana María Gutiérrez Caballero (CAR), Francisco Morentin (CAR), Luis A. Bujedo (CAR), Francesco Peccianti (RINA-C), Nick Purshouse (IESRD), Carolina Ferrando (RINA-C)
Reviewer(s)	Francesco Peccianti (RINA-C), Fabiola Roccatagliata (RINA-C) Nick Purshouse, Olivier Neu (IESRD)
Final review and quality approval	Francesco Peccianti (RINA-C) – 03.11.2020

Document His	Document History						
Date	Version	Name	Changes				
11/05/2020	1.0	Susana Gutiérrez, Francisco Morentin	Initial ToC and chapters brief description				
24/07/2020	2.0	Susana Gutiérrez	General sections				
07/09/2020	3.0	UoB, IES, Rina-C, CAR	Scenario description, review and modification				
15/09/2020	4.0	Susana Gutiérrez	Scenario description review and integration with the rest of the document. Conclusions.				
2/11//2020	5.0	Nick Purshouse	Updates from IES on methodology and restructure of scenarios to fit with this				
2/11/2020	6.0	Olivier Neu	Review and some improvement suggestions				
3/11/2020	7.0	Susana Gutiérrez	Review of the final document and executive summary writing				
3/11/2020	FINAL	F. Peccianti	Final review and quality check				

Page **3** of **78**

Abbreviations

°C: Celsius degrees **CAPEX**: Capital Expenditure CO2: Carbon Dioxide **COP**: Coefficient Of Performance **DCN**: District Cooling Network **DH**: District Heating **DHN**: District Heating Network DHCN: District Heating and Cooling Network DHW: Domestic Hot Water **EER**: Energy Efficiency Ratio **ESCO:** Energy Service Company EU: European Union **GHG:** Greenhouse Gas GIS: Geographic Information System HP: Heat Pump H&C: Heat and Cold IT: Information Technologies LHTES: Latent Heat Thermal Energy Storage LPG: Liquefied Petroleum Gases **KPI:** Key Performance Indicator kW: kilowatt kWh: kilowatt-hour kWh/y: kilowatt-hour per year m²: square metre m²: square metre **NPV**: Net Present Value **OPEX**: Operational Expenditure **ORC**: Organic Rankine Cycle **O&M**: Operation and Maintenance **PV**: PhotoVoltaic **RES**: Renewable Energy Sources PBP: PayBack Period PCM: Phase Change Material TCS: Thermochemical Energy Storage **TDS**: Total Dissolved Solids WH: Waste Heat WH/C: Waste Heat/Cold WHR: Waste Heat Recovery

Deliverable 2.6 Scenario Definition

Page 4 of 78

Executive summary

This document represents the Deliverable 2.6 "Scenario Definition", developed within T2.4 (WP2). It provides not only a description of the identified scenarios, but also a description of the methodology followed to obtain these scenarios. Besides, a methodology for the selection of scenarios is included in order to guide the users of the SO WHAT tool to view and choose the most appropriate technologies and combinations that best suit their context and requirements. This methodology is based on the principles of reducing waste as much as possible and it is a six stage process.

All the partners involved in the scenario generation and description have put all their knowledge in support of the project to try to cover as much scenarios as possible, describing most of the different situations that the SO WHAT tool should take into account. Besides, information coming from multiple work packages of the project has been taken into account: tool's workflow and user needs coming from WP₂, KPIs coming from WP₃ and WP₄ and technical solutions from WP₁.

To provide the reader with all the information needed to perfectly understand this document, a first section including a summary of the SO WHAT tool and its main requirements is included. After this general overview of the SO WHAT tool, the process followed to obtain the list of scenarios and the hierarchy methodology is presented in section 3 (this section also describes the template used to describe each scenario). Section 4 contains the description of all the identified scenarios (using the aforementioned template) fitting them into each stage of the methodology for the selection of scenarios. Finally, the main conclusions are described in section 5.

Deliverable 2.6 Scenario Definition

Page 5 of 78

TABLE OF CONTENTS

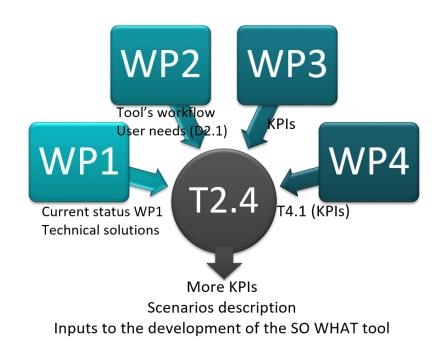
ABB	REVIATIONS
EXE	CUTIVE SUMMARY
1	INTRODUCTION
1.1	Purpose and target group7
1.2	Relation with other activities in the project7
2	SO WHAT TOOL DESCRIPTION AND MAIN REQUIREMENTS SUMMARY
3	SCENARIO IDENTIFICATION AND HIERARCHY METHODOLOGY9
3.1	Scenario identification
3.2	Scenarios and Hierarchy Methodology12
	Stage 1: Baseline waste heat/cooling potential of facility/community12
3.2.2	Stage 2: Reduce energy use and eliminate waste heat/cooling 12
3.2.3	Stage 3: Recover and reuse waste heat/cooling at a factory level
3.2.4	Stage 4: Recover and Reuse waste heat/cooling to provide power at a factory level
3.2.5	Stage 5: Recover and Reuse waste heat/cooling at a community level
3.2.6	Stage 6: Recover and Reuse waste heat/cooling to provide power at a community level
3.3	Scenarios, Hierarchy and applicability to the user13
4	FULL DESCRIPTION OF SCENARIOS
4.1	Stage 1: Scenarios for Baseline waste heat/cooling potential of facility/community
4.2	Stage 2: Scenarios for Reduce energy use and eliminate waste heat/cooling22
	Stage 3: Scenarios for Recover and reuse waste heat/cooling at a factory level
4.4	Stage 4: Scenarios for Recover and Reuse waste heat/cooling to provide power at a factory level54
4.5	Stage 5: Scenarios for Recover and Reuse waste heat/cooling at a community level
4.6	Stage 6: Scenarios for Recover and Reuse waste heat/cooling to provide power at a community level. 74

> Deliverable 2.6 Scenario Definition Page **6** of **78**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

1 Introduction

1.1 Purpose and target group


The main aim of the task liked to this deliverable (T2.4) is to list and define a list of the most important scenarios that are envisaged to be covered by the SO WHAT tool.

As stated in D2.1, three roles have been considered as the main roles to be covered by the SO WHAT tool: industry, ESCO and municipality/energy agency, so the scenarios described in this deliverable are focused on these three roles.

1.2 Relation with other activities in the project

Most of the activities within WP₂ are focused on the specification of the SO WHAT tool and its IT framework, therefore connections with the activities here developed are straightforward.

As stated in Figure 1, T2.4 will use information gathered from different work packages to define and describe the scenarios envisaged to be covered by the SO WHAT tool.

Figure 1 Inputs for T2.4

As shown in Figure 1, there are a lot of information (coming from other tasks and work packages among the SO WHAT project) to be considered and taken as an input to the scenario definition. WP1 will provide a lot of data about the available technical solutions concerning waste heat/cold recovery; WP2 main inputs will be concerning tool's workflow, user needs and use cases; WP3 will provide with information about KPIs, and WP4 inputs will be very important regarding KPIs. The work performed within this task 2.4, as well as the information generated within WP2 will flow into WP4, which is devoted to the actual tool development.

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page 7 of 78

2 SO WHAT tool description and main requirements summary

This chapter contains brief description of the main functionalities that the SO WHAT tool is envisaged to cover based on the information gathered in previous tasks and as described in detail in Deliverable 2.3 Common IT framework specifications.

The SO WHAT Tools, both free and commercial², will perform similar functions but to a different degree of complexity and accuracy. If the user wishes to conduct a quick analysis of the potential for waste heat/cooling and uses, then the outputs from the software will be fairly basic, but adequate enough to enable guidance and allow high level decision making. Whereas if the user wishes to do a detailed study requiring more time and resources, they will receive a highly accurate analysis of how best to utilise waste heat/cooling in their facility or community. The SO WHAT tool is expected to run on a mix of online and desktop software, and irrespective of whether the user is in a Free or Commercial version of the software, the following functions will be performed:

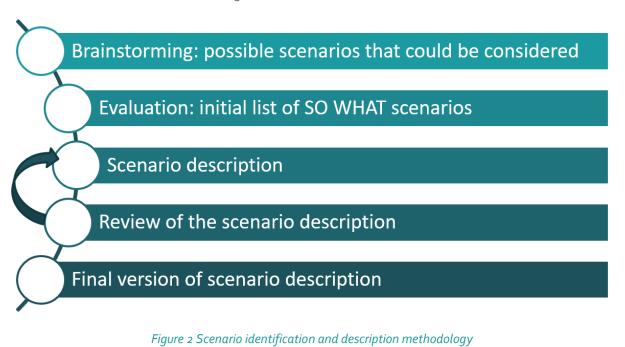
- User management To enable secure log in and sharing of results
- **Data Collection** Guiding the user to only collect the data necessary for their required analysis. Where data is missing, it should be possible for the various databases contained with the tool to use default data.
- **Baseline Analysis results**: In both the free and commercial versions, and at both Manufacturing and Community scales, the user will be able to view Baseline results regarding waste heat/cooling recovery potential and the existing energy network (supply and demand) for their areas of interest.
- Scenario and KPI selections: This is the focus of this deliverable. The user will be able to select from a list of set Scenarios and KPIs that they are interested in. Deliverable 2.3 showed that this will be done with a section of the 'online portal', and for both free and commercial tools it will be called 'Manufacturing/Community Scenario/KPI Setting.' Within D2.3, Use Cases were detailed, and the info in this document either fits into Use Cases for the Free tool F9 Set KPI targets and scenarios or into Use Cases for the Commercial tool C15 Set KPI targets and scenarios.
- **Cost Calculator**: As well as energy KPIs, the user will also be able to view cost-related KPIs in order to see financial information on potential solutions. The cost calculator will take the different cost related algorithms and outputs from WP₃, and apply these to the scenarios selected by the user.
- **KPI Panel and Dashboard**: This is the function where the end user will view the results of their simulations. There will be a KPI panel where the results can be viewed and also a

² "Free" and "Commercial" versions are two naming currently under discussion, given that this is a first exploitation pathway and both version will be free for the duration of the project: this aspect will be clarified and presented in D_{2.4} "Report and presentation on SO WHAT integrated tool functionalities". Nevertheless, it is worth highlighting that one version will be lighter and internet based (Free) and the other will be (partially) desktop based and more detailed (Commercial).

Deliverable 2.6 Scenario Definition

Page **8** of **78**

dashboard format where the user can see the 3D & 2D map view of their building/local area and also see the KPI results visualised around this.


- Value Choice Tool: This allow the user to view multiple scenario results side by side so that they may rank KPIs and choose the most suitable solution according to their needs.
- **Business Model Guide**: This function will use the outputs from WP₃ and the Value Choice Tool to allow the user to view select the most appropriate business model for their needs. Where suitable, Energy Performance Contracting will be recommended and explained.

3 Scenario identification and Hierarchy Methodology

3.1 Scenario identification

This chapter describes how the different scenarios were identified and filtered to become the final ones to be used in the SO WHAT tool, the process used to add details to each scenario, as well as the methodology for the hierarchy of the scenarios that will also be used in the software to guide the user towards the most appropriate selections.

A 'scenario' is defined as a potential future state that a user of the software may wish to simulate in order to understand how to recover waste heat/cooling and how best to use this either in their own facility or in the wider community. Figure 2 summarises the process used to identify the list of scenarios to be considered concerning the SO WHAT tool.

**** * * *** Deliverable 2.6 Scenario Definition

Page 9 of 78

Once all the information to be taken into account to define the scenarios was gathered by the involved partners, a brainstorming period was started to give as much ideas as possible of scenarios to be considered. IESRD, RINA-C, UoB and CAR gave their ideas of scenarios to be taken into account and, as task leader, CAR gather all the proposed scenarios and put them all together in a single document. Then, this list of scenarios was sent to all the partners involved in the task to let them give their opinion about scenarios to be included and scenarios not applicable or not needed in the scope of the SO WHAT project. Once the list of scenarios was agreed among all the involved partners, these scenarios were split in four groups (to be assigned to IESRD, RINA-C, UoB and CAR), and the partners started filling in the template of scenario description (see Table 1) that was defined in the scope of the task. All the scenario descriptions were sent to CAR to be reviewed, and this started a process of reviewing-modifying until each scenario description was finalized, and its final version was accepted.

As stated before, Table 1 presents the template designed to describe each scenario, containing the following information:

- Stage No, Scenario No. and Sub Scenario Title.
- Relevant User type: As stated in D2.1 (Definition of End User Requirements), the main roles considered in the scope of the SO WHAT tool were Industry, ESCO and Municipality/Energy Agency.
- Main Objectives: General objectives mapping: this field is focused on giving a detailed overview of the main objectives of the scenario that is being described.
- Relevant KPIs used for evaluation: KPIs that have to be used to evaluate each solution proposed.
- Example Baseline case: description of the current situation of the facilities/municipality.
- Intervention/Technologies: description of the intervention/s and/or technologies that are being considered in the scope of this scenario, and a brief description of them.
- Requested inputs: list of inputs to be provided by the user to let the SO WHAT tool develop its functionalities and returning the expected results.
- Output: expected output to be given by the SO WHAT tool.
- Main benefits: list (and description, if possible) of the main benefits foreseen by the SO WHAT tool.
- Main "disadvantages": main drawbacks foreseen by the SO WHAT.
- Exceptions: situations that could prevent this scenario from a normal execution, and a description of what could be done if each exception occurs.

Table 1 Scenario description template

Scenario <x></x>	: <scenario title=""> <sub sc<="" th=""><th>enario Title></th></sub></scenario>	enario Title>					
Relevant User Type	Industry/ESCO/Municipality						
Main Objectives	Energetic Domain	□Reduction of final energy					
	consumption	consumption					
	□Reduction of useful energy demand	□Increase share of RES					
	□Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels					
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction					
	DHCN heat density reduction	□Operating hours increase					
	Environmental Domain						
	□CO2 reduction	□Pollutants emission reduction					
	□Noise production reduction	□Increase share of RES					
	□Increase utilization of energy from waste heat sources						
	Economic Domain						
	□Creation of economically feasible H&C scenarios	□Operational costs reduction					
	□Levelized cost of heat	□CO2 reduction cost					
	Social Domain						
	□Energy poverty reduction	□Job increase					
	□Security of supply increase						
Relevant KPIs for evaluation	List of KPIs used to evaluate the bene	fits of the intervention					
Example Baseline case	Description of the current situation in	the facilities/municipality					
Intervention / Technologies	Type/s of intervention/s that are being considered, and a brief description of each of them						
Requested inputs	Inputs to be provided to the SO WHAT tool (if possible, please provide: description, type of data, desired gathering frequency)						
Output	Description of the output that would be offered by the SO WHAT tool (if needed, please include graphics)						
Main benefits	Main benefits envisaged by the SO WHAT tool concerning the information given as an output.						
Main "disadvantages"	Main disadvantages envisaged by information provided to the user as an	the SO WHAT tool concerning the noutput					
Exceptions	What happens if the user does not pro Other exceptions (please, describe explanation about what to do if it occu	the exception and give a detailed					

Deliverable 2.6 Scenario Definition

Page **11** of **78**

3.2 Scenarios and Hierarchy Methodology

The methodology for the hierarchy of scenarios was designed in order to guide the different users to view and choose the most appropriate technologies and combinations that suite their context and requirements. It will be used in the development of the SO WHAT tool whereby the scenarios available to choose from will be dependent on the type of user and the version (Free or Commercial) they are using. The methodology is numbered sequentially, however there are many different sub scenarios grouped under one main theme and a number of them will only apply to specific user types.

The methodology is based on the principles of reducing waste as much as possible, before recovering waste and reusing in the most efficient ways. It is summarized in the followings 6 stages, and then described in further detail below.

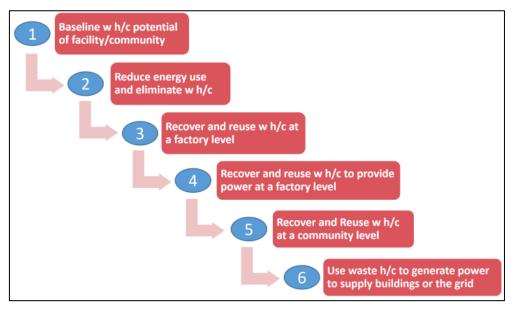


Figure 3 Scenario Selection Hierarchy

3.2.1 Stage 1: Baseline waste heat/cooling potential of facility/community

Although a 'scenario' is defined as a potential future state, the user must first have conducted a baseline simulation of the current state of waste heat/cooling potential and so this is considered as the top in the hierarchy and first scenario to consider. In both the free and commercial versions of the SO WHAT tool, this step will be done before the user is able to go through the other future scenarios. There are 3 Scenarios associated with this stage.

3.2.2 Stage 2: Reduce energy use and eliminate waste heat/cooling

This stage of the scenario hierarchy is not directly the focus of SO WHAT, nonetheless it is a logical and necessary steps that the user should consider and decide whether to conduct before moving to explore waste heat/cooling recovery and distribution. As the overall aim of reusing waste heat or cooling is to reduce the amount of resources utilised and cut down on carbon emissions, the industrial user of one facility should therefore try to improve the overall energy efficiency of their building before looking specifically at waste heat/cooling. In the software (as explained in D2.3), there will be

Horizon 2020 European Union Funding for Research & Innovation Deliverable 2.6 Scenario Definition

Page **12** of **78**

a link in the commercial tool into IES VE to enable the user to conduct detailed energy performance simulations of their facility and analyse the best energy efficiency strategies for the whole building.

Similarly, the user of that facility should also look to completely eliminate waste heat/cooling from their process before trying to understand recovery potential. This is explained using Kaizen techniques. It should be noted this analysis is not part of SO WHAT, but was a key focus of a prior EU H2020 funded project REEMAIN.

3.2.3 Stage 3: Recover and reuse waste heat/cooling at a factory level

This relates to the recovery of waste heat/cooling to be re-used in the factory. Firstly, the user should look at whether they can re-use the waste within the same process as this will be the most efficient way to initially utilise resources, before analysing further on how utilise it in a different process in the facility. There are 16 Scenarios associated to this stage which describe the different technologies to recover waste heat, and how it can be reused as heat in the factory processes.

3.2.4 Stage 4: Recover and Reuse waste heat/cooling to provide power at a factory level

Stage 4 continues within the factory, albeit this time to generate power rather than solely thermal energy. There are a further 4 Scenarios associated with this Stage relating to general guidance on how to generate power and how to add solar panels/solar collectors, as well as more specific guidance on maximising the use of renewable energy and the optimal mix of different installations.

3.2.5 Stage 5: Recover and Reuse waste heat/cooling at a community level

Stage 5 moves to the scenarios at a community level in terms of the recovery of waste heat/cooling from industry. The first scenario concerns the overall matching of supply and demand, and then other scenarios look at how either a district heating network, or another means of transport, could be used to distribute the waste heat to the consumer. There is also a scenario related to the storage of waste heat so that it can be used at a later date, as well as two other scenarios that allow the user to conduct a cost benefit analysis of expanding a district h/c network, or constructing a new one, to connect to newly identified waste heat sources and users.

3.2.6 Stage 6: Recover and Reuse waste heat/cooling to provide power at a community level.

The final Stage relates to recovering waste heat/cooling from an industry and then converting this to produce electricity to be used either by other local buildings as part of a micro grid, or to be sold and used by the national grid.

3.3 Scenarios, Hierarchy and applicability to the user

Overall, there were 34 Scenarios developed that could be applicable to SO WHAT that fit within the 6-Stage methodology as described in the previous section. For each of these scenarios the hierarchy and their applicability to the user is shown in the table below:

Deliverable 2.6 Scenario Definition

Page 13 of 78

Stage	Stage Description	Scen. No.	rchy and applicability Scenario Title	Sub Scen.		Industry	ESCO	Municipality
1	Baseline w h/c potential of facility/community	1.1	Baseline w h/c potential of individual facility	No.		Х	Х	
		1.2	Baseline - Identify potential w h/c users in my community			Х	Х	X
		1.3	Baseline - Identify potential w h/c sources in my community			Х	Х	X
2	Reduce energy use and eliminate w h/c	2.1	Improve the energy efficiency of my building			X		
		2.2	Eliminate w h/c from my processes/services where possible			Х		
3	Recover and reuse w h/c at a factory level	3.1	Recover w h/c to be re-used in the same process in my facility	3.1.1	WHR in Steam boilers by installation of economizers	X	X	
				3.1.2	WHR in the Steam boilers purge (Total Dissolved Solids, TDS, control)	X	Х	
				3.1.3	Recovery from ovens for preheating of the burners input air (Option 1)	X	X	
		3.2	Recover w h/c to be re-used in a different process in my facility	3.2.1	WHR from Air Compressors for DHW or Space Heating (Preheating of water)	X	X	

Table 2 List of scenarios , their hierarchy and applicability to the user

3.2.2	WHR in the Steam	Х	Х
	boilers purge		
	(Total		
	Dissolved		
	Solids, TDS,		
	control)		
3.2.3	Recovery	Х	Х
	from ovens		
	for generating		
	external hot		
	water		
	(Option 2)		
3.2.4	Valorisation	Х	
	of effluent		
	stream with		
	HPs to		
	produce hot		
225	water Use of	Х	X
3.2.5	absorption	~	^
	chillers to		
	produce		
	' refrigeration		
	cold water		
	from WHR		
3.2.6	Waste Heat	Х	Х
	Recovery in		
	the condensate		
	collecting		
	receiver		
3.2.7	Cold	Х	X
	recovery in		
	the gas		
	expansion		
	systems		
	(gasification		
220	plants)	Х	X
3.2.8	Upgrade of low-grade	^	^
	waste heat		
	by using heat		
	pump in		
	order to		
	meet process		
	heat demand		
3.2.9	Waste heat	Х	
	recovery		
	from existing		

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page **15** of **78**

			1		-			· · · · · · · · · · · · · · · · · · ·
					refrigeration			
					system			
				3.2.10	Recovery	Х		
					from Electric			
					Chillers to			
					produce			
					' medium-low			
					temperature			
					hot water			
					(Preheating			
					-			
					systems)	X		
				3.2.11	Cold Thermal	X		
					Energy			
					Storage			
					integration			
					for WHR			
					inside a			
					factory			
				3.2.12	Optimize	Х	Х	
				5 = - = =	waste			
					heat/cold			
	Recover and reuse		Recover w h/c to		energy use	Х	Х	
4		4.1				×	~	
	w h/c to provide		generate power					
	power at a factory		for my facility					
	level	4.2	Add solar			Х	Х	Х
			panels/solar					
			thermal collectors					
			on my site.					
		4.3	Maximise the use			Х	Х	
			of renewable					
			energy I have					
			installed.					
			Optimise the mix			Х	Х	X
		4.4	of renewable			^	^	^
			energy					
			installations at my					
			site					
5	Recover and	5.1	Match local			Х	Х	Х
	Reuse w h/c at a		potential supply of					
	community level		waste heat with					
			local demand					
		5.2	Thermal Storage			Х	Х	
			evaluation for WH					
			integration into					
			DH networks					
		F C	WHR from Air			Х	Х	
		5.3				^	^	
			Compressors for					
			Heating Network					
			heat into District Heating Network					

Page **16** of **78**

		5.4	Preliminary analysis of the cost related to DHN link		X	Х	X
		5.5	Recover waste heat from a site and transport it for use in other buildings without the need of a DH network or pipes.		X	X	
		5.6	Use of absorption chillers in a district heating network			Х	
		5.7	Heat Pumps with PV panels into DH network				
		5.6	Conduct a cost benefit analysis of expanding a district h/c network or constructing a new one, to connect to newly identified waste heat sources and users			X	X
6	How can I use w h/c to generate power to supply buildings or the grid	6.1	Recovery of industrial WH for electricity production (to be sold to the grid or local community)		X	×	X
		6.2	RES evaluation			Х	X

Page **17** of **78**

4 Full Description of Scenarios

This section contains the description of each scenario as its fits into each Stage of the methodology and using the aforementioned template.

4.1 Stage 1: Scenarios for Baseline waste heat/cooling potential of facility/community

Table 3 Scenario 1.1 description

Scenario 1.1:	Baseline w h/c potential o	f individual facility						
Relevant User Type	Industry							
Main Objectives	Energetic Domain Reduction of primary energy consumption Reduction of useful energy demand Increase utilization of energy from waste heat sources Reduction of energy consumption from imported sources DHCN heat density reduction	 ☑ Reduction of final energy consumption ☑ Increase share of RES ☑ Reduction of energy consumption from conventional fuels ☑ DHCN thermal losses reduction ☑ Operating hours increase 						
	Environmental Domain \Bigcolumn CO2 reduction DNoise production reduction DIncrease share of RES Sincrease utilization of energy from waste heat sources							
	Economic Domain Creation of economically feasible H&C scenarios							
	□Levelized cost of heat □CO2 reduction cost Social Domain □Isob increase □Energy poverty reduction □Job increase ⊠Security of supply increase □							
Relevant KPIs for evaluation	N/A							
Example Baseline case	Description of the current situation in the facilities/municipality							
Intervention / Technologies	N/A	N/A						

Deliverable 2.6 Scenario Definition

Page **18** of **78**

Requested inputs	 Description of the production process of the industry (SO WHAT tool will ask for this information using checklist or different forms) Description of the devices where waste heat is supposed to be produced (compressors, steam boilers, ovens, electric chillers). Information to be asked for: brand, year of manufacture, power Data concerning thermal energy demand (both about heating and cooling) 					
Output	 List of the possible sources of waste heat/cold Information about low-level scenarios linked to each source 					
Main benefits	The user has an understanding of the potential waste heat sources in the community and can begin to analyse how to best use them.					
Main "disadvantages"	N/A					
Exceptions	 If the industry does not provide: Description of the production process of the industry -> the SO WHAT tool would be able to gather information about it based on the type of industry that are being considered Some data concerning the devices where waste heat is supposed to be produced -> some data could be obtained based on "key details" given by the user 					

Table 4 Scenario 1.2 description

Scenario 1.2: Baseline - Identify potential w h/c users in my community		
Relevant User Type	Industry/ESCO/Municipality	
Main Objectives	Energetic Domain	
-	□Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	⊠Increase share of RES
	⊠Increase utilization of energy	⊠Reduction of energy
	from waste heat sources	consumption from conventional
		fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	☑DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	⊠Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	

Deliverable 2.6 Scenario Definition

Page **19** of **78**

	Economic Domain	
	⊠Creation of economically feasible	
	H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO ₂ reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs	List Energy demand per m2	
	Peak power demand	
for evaluation	Global/weekly/monthly energy demar	nd
	CO ₂ intensity	
		sed to evaluate the benefits of the
	intervention	
Example	Unknown distribution demand of city/	district,
Baseline case	Possible unbalanced energy demand,	
	High-level knowledge of the overall co	onsumption
Intervention /	N/A	
Technologies		
Requested	Annual global energy demand (fuel)	
inputs	Building characteristics	
	Current energy mix (absolute values)	
	Geographical information (maps)	
	High-level information on the demand characteristics (e.g. peak, typical	
	distribution)type of data, desired gathering frequency,)	
Output	Visualisation of the energy demand over the map at annual level:	
	superposition of the demand identified by different colours on the	
	city/district map	
	Increased granularity of the demand calculated up to hourly data: demand	
	calculated is available on hourly basis (mainly for internal use by the Tool)	
	Graphic of demand over time (possibly superposed to the map): possibility to plot the demand over a selected time	
Main benefits	Additional info for local authority for e	energy planning
mani senenci		n the tool (coupling with other parts of
	the software for further analysis)	
	Possibility to export data outside SO \	VHAT tool
Main	Info not necessarily available, difficult	
"disadvantages"	Basic knowledge of GIS base tool	
Exceptions	If the user does not provide the necess	ary info, then the SO WHAT tool would
	try to gather this information based on industry waste heat profiles defaults	
	in the database associated with this in	

Page **20** of **78**

Table 5 Scenario 1.3 description

Scenario 1.3: Baseline - Identify potential w h/c sources in my		
community		
Relevant User	Industry/ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
	☑Reduction of primary energy consumption	⊠Reduction of final energy consumption
	□Reduction of useful energy demand	⊠Increase share of RES
	□Increase utilization of energy from waste heat sources	☑Reduction of energy consumption from conventional fuels
	⊠Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	☑ DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO₂ reduction	Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	⊠Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	⊠Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs	N/A	
for evaluation		
Example	The entity wants to identify the WH/C sources available in its area	
Baseline case		
Intervention / Technologies	N/A	
Requested	In the case of a municipality/energy ag	gency/ESCO:
inputs	 Country/city/area where the s 	tudy wants to be applied
	Location	
	Nearby industries, DHN	
Output	List of the possible sources of	
Mala har afita	Information about low-level so The user has an understanding of the	
Main benefits	community and can begin to analyse l	e potential waste heat sources in the
Main	N/A	
"disadvantages"		

Deliverable 2.6 Scenario Definition

Page **21** of **78**

Exceptions	If the municipality/energy agency/ESCO does not provide:	
	 Nearby industries, DHN, and its location -> the SO WHAT tool 	
	would try to gather this information based on industry waste heat	
	profiles defaults in the database associated with this in the software	
	 If an ESCO is willing to make preliminary evaluation, the SO WHAT 	
	tool will use general information based on the type of industry	

4.2 Stage 2: Scenarios for Reduce energy use and eliminate waste heat/cooling

Table 6 Scenario 2.1 description

Scenario 2.1: Improve the energy efficiency of my building		
Relevant User	Industry	
Туре		
Main Objectives	Energetic Domain	
	Reduction of primary energy consumption	□Reduction of final energy consumption
	oxtimesReduction of useful energy demand	□Increase share of RES
	□Increase utilization of energy from waste heat sources	Reduction of energy consumption from conventional fuels
	☑Reduction of energy consumption from imported sources	DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO₂ reduction	☑Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	□Increase utilization of energy from waste heat sources	
	Economic Domain	
	☑ Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Energy saving per m2 Energy consumption per m2	
Example Baseline case		evaluation of changes on it is to be hermal characteristics of the building

Deliverable 2.6 Scenario Definition

Page **22** of **78**

Intervention / Technologies	 The objective is to evaluate the effect of EE measures on the overall thermal demand and its impact, therefore the changes expected. The proposed intervention should be high-level and not on the specific (e.g.) apartments: Introduction of insulation products of building façades, windows, roofs Improve energy efficiency by other measures as change of thermal equipment 	
Requested	Thermal characteristic of the building (after and before intervention)	
inputs	Energy demand evaluated at a previous step	
	Technology for H/C if considered	
Output	Multiple scenarios can be created by comparing a different number of	
	retrofitted buildings and/or different retrofitting measures: they can be	
	evaluated based on selected KPIs (energy demand, energy intensity)	
Main benefits	Evaluation of energy efficiency measures for buildings and evaluation of	
	changes in overall city landscape	
Main	Main disadvantages envisaged by the SO WHAT tool concerning the	
"disadvantages"	information provided to the user as an output.	
Exceptions	What happens if the user does not provide all the information?	
	Other exceptions (please, describe the exception and give a detailed	
	explanation about what to do if it occurs)	

Table 7 Scenario 2.2 description

Scenario 2.2:	Scenario 2.2: Eliminate w h/c from my processes/services where	
possible		
Relevant User	Industry	
Туре		
Main Objectives	Energetic Domain	
	⊠Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	□Increase utilization of energy from waste heat sources	Reduction of energy consumption from conventional fuels
	⊠Reduction of energy consumption from imported sources	DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	☑Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	

Deliverable 2.6 Scenario Definition

Page **23** of **78**

	Economic Domain	
	□Creation of economically feasible	☑ Operational costs reduction
	H&C scenarios	
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Energy saving per m2	
for evaluation	Energy consumption per m2	
Example	The facility wants know where it is pot	tentially wasting heat/cooling and how
Baseline case	this can be eliminate completely.	
Intervention /	Kaizen approaches (summarised as):	
Technologies		KPIs, identify energy consumers, set
reennologies	targets	
	II. Discovery – initial analysis and engagement of stakeholders	
	III. Stop - Turn-off what is not required i.e. idling processes, lighting etc.	
	IV. Eliminate – remove unnecessary energy consumers for alternative	
	e.g. swap electric driven conveyor belt for gravity feed conveyor	
	V. Repair - Linked to maintenance e.g. compressed air leaks etc.	
	VI. Reduce - Challenge set-points of processes e.g. reduce oven	
	temperature by `x' °C if product is not compromised	
Requested	• Description of the production process of the industry (SO WHAT tool	
inputs	will ask for this information using checklist or different forms)	
	• Description of the devices where waste heat is supposed to be	
	produced (compressors, stea	am boilers, ovens, electric chillers).
		rand, year of manufacture, power
Output	Analysis of specific processes and machinery where waste heat could be	
	reduced or eliminated completely.	
Main benefits	Reduced energy demand, reduced costs and improved efficiency of	
	operations.	
Main	The exercise is considered as time and resource intensive	
"disadvantages"		
Exceptions	N/A – as the SO WHAT software is not performing this scenario.	
	I	

Page **24** of **78**

4.3 Stage 3: Scenarios for Recover and reuse waste heat/cooling at a factory level

4.3.1 Recover WH/C to be re-used in the same process in my facility

Table 8 Scenario 3.1.1 description

Scenario 3.1.1- WHR in Steam boilers by installation of		
economizers		
Relevant User Type	Industry/ESCO	
Main Objectives	Energetic Domain	 □Reduction of final energy consumption □Increase share of RES □Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction □Operating hours increase □Pollutants emission reduction □Increase share of RES □Operational costs reduction
	□Levelized cost of heat Social Domain □Energy poverty reduction □Security of supply increase	□CO2 reduction cost □Job increase
Relevant KPIs for evaluation	Boiler performance improvement. Energy saving compared to baseline. CO2 emission abatement compared to Payback period	
Example Baseline case	boilers not equipped with economized that will be probably replaced in the n	
Intervention / Technologies	combustion gases boiler chimney to itself. There are two possible type condensation economizers. The boiler	n of an air-water exchanger in the preheat the feed water of the boiler es of economizers: conventional or r feed water system must be converted as a start-stop operation system (two-

Deliverable 2.6 Scenario Definition

Page **25** of **78**

Demuested	Burner and Boiler models, powers and age.	
Requested	Time series of steam needs (pressure, temperature, and flow).	
inputs		
	Price of steam (current cost for the industry of producing the required steam)	
	Exhaust gas stack temperature and flow	
	Temperature of feed water	
	Price of fuel.	
Output	Economizer power [kW]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Improvement in the operation of the boiler by feeding with water at a higher	
	temperature.	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
, . .	If not calculated correctly, there may be overheating in the feed tank	
	Reduction of the useful file of the boiler's pumps	
	Additional minor increase in electricity consumption	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values \rightarrow The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	directly boile some simolated thermal demand corves	
	II. The current cost of producing steam is not known. The tool might	
	have an auxiliary calculator to provide a rough estimation based on	
	providing data like the gas prices, the type of boiler, steam	
	characteristics and other technical data.	
	III. There is no information about the stack exhaust gas temperature and	
	flow. The tool might be able to do a rough estimation based on the	
	values of temperature, pressure and flow of produced steam.	
	1 /1 ·····	

Page **26** of **78**

Table 9 Scenario 3.1.2 Description

Scenario 3.1.2: WHR in the Steam boilers purge (Total Dissolved Solids, TDS, control)		
Relevant User	Industry/ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
-	⊠Reduction of primary energy	□Reduction of final energy
	consumption	consumption
	Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	□CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Boiler performance improvement. Energy saving compared to baseline. CO2 emission abatement compared to baseline Payback period.	
Example Baseline case	Industry with a high consumption of live steam. Industrial processes with low condensate return have higher blowdown rates and therefore are more suitable for this measure.	
Intervention / Technologies	Installation of a system to recover heat from the blowdown purges of a boiler by installing a flash vessel and a water-water exchanger. The flash vessel lowers the high-pressure blowdown stream to atmospheric pressure, generating flash steam and a flow of 100°C water. The flash steam is collected and used to provide heating elsewhere or injected back to the boiler's condensate receiver. The hot water (high TDS content) is discharged to the heat exchanger used to preheat the makeup water. In case of non-continuous blowdown systems, it will be required to convert them into continuous systems.	

Deliverable 2.6 Scenario Definition

Page **27** of **78**

Requested	Boiler model and operation pressure	
inputs	Time series of steam needs (pressure, temperature, and flow).	
	Maximum allowed TDS content in the boiler	
	Feed water TDS content	
	Average temperature of feed water.	
	Price of steam (industry cost of producing the required steam)	
Output	Flow of TDS purge (blowdown rate)	
	Water supply saved [m ³ /y]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the consumption of water	
	Improvement in the operation of the boiler by feeding with water at a higher	
	temperature.	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
	More complex facilities	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values \rightarrow The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	II. The current cost of producing steam is not known. The tool might	
	have an auxiliary calculator to provide a rough estimation based on	
	providing data like the gas prices, the type of boiler, steam	
	characteristics and other technical data.	

Page **28** of **78**

Table 10 Scenario 3.1.4 description

Scenario 3.1.3: Recovery from ovens for preheating of the		
burners input	air (Option 1)	
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	☑Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	Pollutants emission reduction
	□Noise production reduction ⊠Increase utilization of energy from	□Increase share of RES
	waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Power of recovery vs burner power	
for evaluation	Energy saving compared to baseline. CO2 emission abatement compared to	o baseline
	Payback period	o buscinic
Example Baseline case	Existing industry with ovens that emit whose burners receive the input fresh	high/medium temperature fumes and air at ambient temperature. Old ovens en replacement is foreseen in the next
Intervention / Technologies	The exhaust chimney output strean exchanger in order to recover a portic to the clean air that enters the boiler' to pass through the heat exchanger	n is diverted through an air-air heat on of its thermal energy and transfer it is burners. Both air streams are forced by the action of additional fans. The ng with preheated inlet air instead of

Deliverable 2.6 Scenario Definition

Page **29** of **78**

Doguactad	Type and power of the burners and number of them.
Requested	
inputs	Oven chimney fumes production time-series. (flow and temperature vs
	Time).
	Description of the physico-chemical properties of the fumes (humidity
	content, dust presence).
	Price of thermal energy (gas or diesel)
	Oven temperature
	Electricity price
Output	Exchanger power [kW].
	Annual energy saved. [kWh/y]
	Approximate cost of investment. [€]
	Payback period [years]
Main benefits	Reduction of the consumption of fossil fuels
	Reduction of the pollutants and CO2 emissions
	Economic revenues (the most important for an ESCO)
Main	Investment costs (at least it would be required the new heat exchangers and
"disadvantages"	pipes and the replacement of the oven burners. In the worst case, the
, . .	complete replacement of the oven)
	Required space. (or additional weight if the heat exchanger is placed on top
	of the oven)
	Formation of condensates in the chimney that can reduce its useful life.
	Additional extra electric consumption due to the required fans associated to
	the heat exchangers
Exceptions	There is lack of detailed time-series, but there are available fragments of
	time-series or there are available some instantaneous power values $ ightarrow$ The
	tool might allow to fill the missing values or directly "built" some simulated
	thermal demand curves.

Page **30** of **78**

4.3.2 Recover WH/C to be re-used in a different process in my facility *Table 11 Scenario 3.2.1 Description*

Scenario 3.2.1	1: WHR from Air Compre	essors for Space Heating
(Preheating o		
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	⊠Reduction of primary energy	□Reduction of final energy
	consumption	consumption
	Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption	DHCN thermal losses reduction
	from imported sources	
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from	
	waste heat sources	
	Economic Domain	1 —
	Creation of economically feasible	☑ Operational costs reduction
	H&C scenarios □Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs	Power compressor vs power recovery	(at the water use temperature)
for evaluation	Recoverable energy vs distance comp	•
	Energy saving compared to baseline.	
	CO2 emission abatement compared t	o baseline
	Payback period.	
Example	· · · · · · · · · · · · · · · · · · ·	pped with high-power air compressors
Baseline case		nperature water or relatively important
		ne same consideration applies for the
Intervention /	refrigerant compressors of the split co	xchanger in the compressor oil cooling
		ressors manufacturers offer a kit to
Technologies		o possible to use generic kits in case of
	non-availability of the manufacturer's	
	1	ge in the water side depending on the
		emand and the type of compressors
	(modulated or start-stop).	

Deliverable 2.6 Scenario Definition

Page **31** of **78**

Requested	Compressor brand, model and power.	
inputs	Time series of compressed air demand (or compressor power energy	
inpots	consumption profile)	
	Time series of hot water energy demand	
	Distance between compressor and hot water production facility.	
	Price of thermal energy or current cost for the industry of producing the	
	required hot water	
Output	Heat exchanger power	
	Minimum size of tank accumulators (inertial tanks) [m3]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the pollutants and CO2 emissions	
	Improvement in oil cooling, especially in summer	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
	Increased electricity consumption due to the additional water pumping.	
Exceptions	I. There is lack of detailed time-series, but there are available	
•	fragments of time-series or there are available some instantaneous	
	power values \rightarrow The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves.	
	II. Power compressor time series and water use time series have	
	different sampling frequency → The tool might allow to "harmonize"	
	both time series	
	III The surrent cost of producing bot water is not known (for instance	
	III. The current cost of producing hot water is not known (for instance, hot water is produced from steam in a centralized system without	
	specific energy meters) → The tool might have an auxiliary calculator	
	to provide a rough estimation based on providing data like the gas	
	prices, the type of boiler and other technical data.	
	1	

Page **32** of **78**

Table 12 Scenario 3.2.2 description

Scenario 3.2. Solids, TDS, o	2: WHR in the Steam boile control)	ers purge (Total Dissolved
Relevant User	Industry/ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
	oxtimesReduction of primary energy	□Reduction of final energy
	consumption	consumption
	Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	□CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	☑Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Boiler performance improvement. Energy saving compared to baseline. CO2 emission abatement compared t Payback period.	o baseline
Example Baseline case	condensate return have higher blow suitable for this measure.	ve steam. Industrial processes with low vdown rates and therefore are more
Intervention / Technologies	by installing a flash vessel and a war lowers the high-pressure blowdow generating flash steam and a flow collected and used to provide heatin boiler's condensate receiver. The hot to the heat exchanger used to preheat	t from the blowdown purges of a boiler ter-water exchanger. The flash vessel n stream to atmospheric pressure, of 100°C water. The flash steam is ng elsewhere or injected back to the water (high TDS content) is discharged t the makeup water. systems, it will be required to convert

Deliverable 2.6 Scenario Definition

Page **33** of **78**

Requested	Boiler model and operation pressure	
inputs	Time series of steam needs (pressure, temperature, and flow).	
	Maximum allowed TDS content in the boiler	
	Feedwater TDS content	
	Average temperature of feed water.	
	Price of steam (industry cost of producing the required steam)	
Output	Flow of TDS purge (blowdown rate)	
	Water supply saved [m ³ /y]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the consumption of water	
	Improvement in the operation of the boiler by feeding with water at a higher	
	temperature.	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
5	More complex facilities	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values $ ightarrow$ The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	II. The current cost of producing steam is not known. The tool might	
	have an auxiliary calculator to provide a rough estimation based on	
	providing data like the gas prices, the type of boiler, steam	
	characteristics and other technical data.	

Page **34** of **78**

Table 13 Scenario 3.2.3 description

	3 Recovery from ovens for	r generating external hot
water (Option		
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	☑Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	□Increase utilization of energy from waste heat sources	Reduction of energy consumption from conventional fuels
	☑Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	□DHCN heat density reduction	Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	☑Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Power of recovery vs burner power	
for evaluation	Recoverable energy vs distance betwe	een them.
	Energy saving compared to baseline.	
	CO2 emission abatement compared to	o baseline
	Payback period	
Example	. .	that emit fumes at high/medium
Baseline case	distance from the ovens.	t feed on hot water at a reasonable
Intervention /	,	ed by the introduction of an air-water
Technologies	transfer it to a hot water flow. Th restriction to the chimney airflow that	ortion of the fumes thermal energy and e new heat exchanger introduces a t typically requires to be compensated may also require storage tanks for the

Deliverable 2.6 Scenario Definition

Page **35** of **78**

Requested	Power of the oven	
	Oven chimney fumes production time-series. (flow and temperature v	
inputs	Time)	
	Description of the physico-chemical properties of the fumes (humidity	
	content, dust presence).	
	Time series of end-use energy needs (flow and temperature vs time).	
	Price of thermal energy or current cost for the industry of producing the	
	required hot water.	
	Distance between oven chimneys and the hot water circuits	
	Electricity price	
Output	Exchanger power [kW].	
•	Size of tank accumulators (if necessary, its installation) [m ³]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space (tanks, pipes, pumps)	
	Formation of condensates in the chimney that can reduce its useful life.	
	Additional extra electric consumption due to the required additional fan i	
	the chimney and the water pumps.	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	The feed of the Children of the second	
	power values $ ightarrow$ The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to 	
	directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to 	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to "harmonize" both time series 	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to "harmonize" both time series III. The current cost of producing hot water is not known (for instance, 	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to "harmonize" both time series III. The current cost of producing hot water is not known (for instance, hot water is produced from steam in a centralized system without 	
	 directly "built" some simulated thermal demand curves II. Gas combustion production time series and thermal use time series have different sampling frequency → The tool might allow to "harmonize" both time series III. The current cost of producing hot water is not known (for instance, hot water is produced from steam in a centralized system without specific energy meters) → The tool might have an auxiliary 	

Page **36** of **78**

Table 14 Scenario 3.2.4 description

Scenario 3.2.4: Valorisation of effluent stream with Heat Pumps		
to produce hot water		
Relevant User Type	Industry/ESCO	
Main Objectives	Energetic Domain □Reduction of primary energy consumption □Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources □Reduction of energy consumption from imported sources □DHCN heat density reduction Environmental Domain □CO2 reduction □Noise production reduction ⊠Increase utilization of energy from waste heat sources Economic Domain	 □Reduction of final energy consumption □Increase share of RES □Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction □Operating hours increase □Pollutants emission reduction □Increase share of RES
	 Creation of economically feasible H&C scenarios Levelized cost of heat Social Domain Energy poverty reduction Security of supply increase 	 ☑ Operational costs reduction ☑ CO₂ reduction cost ☑ Job increase
Relevant KPIs for evaluation	Temperature ratio between end use and effluent. (T _{heat} /T _{eff}) Recoverable energy vs distance between them. Energy saving compared to baseline. CO ₂ emission abatement compared to baseline Payback period.	
Example Baseline case	Existing industry with significant unused hot/warm liquid effluent stream with insufficient temperature to be directly used. Moreover, in the case of wastewater, the industry might be expending electricity on cooling the effluent before it enters the water treatment plant.	
Intervention / Technologies	necessary to have specific heat experience of the specific heat expected of the specific heat experience of the specific heat expected of the	properties of the effluent, it could be changers and filtering systems. The d to the temperatures of both the cold nd use). The measure may also require he heat pump depending on the hourly

Deliverable 2.6 Scenario Definition

Page **37** of **78**

Requested	Excess effluent liquid production time-series (flow and temperature vs Time).	
inputs	Time series of end-use energy needs (flow and temperature vs time).	
	Distance between flows.	
	Price of thermal energy (or current cost for the industry of producing the	
	required hot water)	
	Price of electrical energy. (average price or X-Period tariffs)	
Output	Heat pump power [kW]	
	Exchanger power (If necessary, its installation) [kW].	
	Recommended filters and/or heat exchangers based on the effluent physico-	
	chemical properties	
	Size of tank accumulators (if necessary, its installation) [m3]	
	Electrical energy consumed by the heat pump per year. [kWh/y]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
alsaarantages	Increase of the electricity consumption (max power and energy)	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values $ ightarrow$ The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	II. Effluent production time series and thermal use time series have	
	different sampling frequency → The tool might allow to "harmonize"	
	both time series	
	hot water is produced from steam in a centralized system without	
	specific energy meters) $ ightarrow$ The tool might have an auxiliary calculator	
	to provide a rough estimation based on providing data like the gas	
	prices, the type of boiler and other technical data.	

Page **38** of **78**

Table 15 Scenario 3.2.5 Description

Scenario 3.2.5: Use of absorption chillers to produce refrigeration cold water from WHR		
Relevant User Type	Industry	
Main Objectives	Energetic Domain	
	Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	COP Coefficient of performance (Cold	Energy/waste Energy)
for evaluation	Energy saving compared to baseline.	
	CO2 emission abatement compared to	o baseline
	Payback period	used recovered waste heat potentials
Example		d in their own factory processes and
Baseline case	systems.	
Intervention /	,	rption machine and an intermediate
Technologies		to condense the machine. The optimal
		he factory; otherwise, cooling towers
Requested	would be necessary. Excess waste heat production time-se	ries (flow and Temperature vs time)
inputs	Cooling demand time-series (tempera	
	Values of maximum peak power dema	
	Geographical location	
	Price of cold thermal energy.	
	Price of electrical energy.	

Deliverable 2.6 Scenario Definition

Page **39** of **78**

Output	Absorption chiller Power [kW]	
	Size of tank accumulators (if necessary, its installation) [m3]	
	Waste Heat energy consumed by the absorption chiller per year. [kWh/y]	
	Cold energy produced by absorption chiller (Annual energy saved) [kWh/y]	
	Cooling energy to dissipate in the cooling tower [kWh/y]	
	5 57 1	
	Electricity consumption of the system (cooling tower and pumps) [kWh/y]	
	Water consumption in the cooling tower [m3/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of electricity.	
	Reduction of the pollutants and CO2 emissions.	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
J	Cooling tower (\rightarrow Legionella treatment and other maintenance issues, water	
	consumption)	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values \rightarrow The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	II. Waste heat production time series and cold use time series have	
	different sampling frequency → The tool might allow to "harmonize"	
	both time series	
	III. If the price of cold thermal energy is not available \rightarrow The tool might	
	do an approximated calculation based on the chiller model and the	
	weather data.	

Page **40** of **78**

Table 16 Scenario 3.2.6 description

Scenario 3.2.6: Waste Heat Recovery in the condensate collecting receiver by the use of a vent condenser		
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	☑Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	□Increase utilization of energy from waste heat sources	
	Economic Domain	
	⊠Creation of economically feasible H&C scenarios	☑Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Pressure drop in condensate line.	
for evaluation	Recoverable energy vs distance betwe	een them.
	Energy saving compared to baseline.	o basalina
	CO2 emission abatement compared to Payback period	o baseline
Example		s steam in the return condensate tank.
Baseline case		nsate is reduced, a portion of the liquid
Dasenne case		in most cases, the flashing steam is
	vented, and its energy content lost	-
Intervention /		ent any build-up of pressure, but a heat
Technologies		recover this energy. It could condense
		al energy to incoming makeup water,
	makeup water and clean distilled cond	rgy is recovered in two forms: hotter
		activate ready for its use.

Deliverable 2.6 Scenario Definition

Page **41** of **78**

Requested	Time series of steam demand (pressure, temperature, and flow).	
	Percentage of steam consumed and that returned to the feed tank.	
inputs	Condensed steam return pressure.	
	Feed tank pressure.	
	Time series of end-use energy needs (flow and temperature vs time).	
	Distance between flows (water condensed and energy needs).	
	Temperature supply water.	
	Cost of producing distilled water at use temperature,	
	Cost of producing steam.	
	Price of thermal energy.	
	Price of electrical energy.	
Output	Exchanger power [kW].	
	Water saved [m3]	
	Annual energy saved. [kWh/y]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the pollutants and CO2 emissions	
	Economic revenues (the most important for an ESCO)	
Main	Investment costs.	
"disadvantages"	Required space.	
,		
Exceptions	I. There is lack of detailed time-series, but there are available fragments	
	of time-series or there are available some instantaneous power	
	values $ ightarrow$ The tool might allow to fill the missing values or directly	
	"built" some simulated thermal demand curves	
	II. Steam vent production time series and thermal use time series have	
	different sampling frequency 芛 The tool might allow to	
	"harmonize" both time series	

Page **42** of **78**

Table 17 Scenario 3.2.7 description

Scenario 3.2	.7: Cold recovery in the	gas expansion systems
(gasification	plants)	
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	☑Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption _from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	□CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Pressure (supply or storage) / Pressure Payback period [years]	e use
Example Baseline case	The plant has an expansion/gasification facility from compressed or liquefied gases and the facility has cold supply needs. It can also be included factories where natural gas or LPG is supplied in liquid state.	
Intervention / Technologies	Normally, liquefied gases evaporate in an air evaporator absorbing heat from the environment. High-value cold is lost to atmosphere. Using specific cold exchangers is possible to transfer rejected heat to the gas expansion device and therefore implement a free cooling system with almost cryogenic operation temperatures (typically between -50°C and -30°C). Due to this lower temperature values, thermal storage as well as the primary cooling circuits are usually filled with specific brines like Calcium Chloride brine.	

Deliverable 2.6 Scenario Definition

Page **43** of **78**

Requested	Gas (name, composition).	
inputs	Supply/storage pressure.	
	Operating pressure.	
	Gas consumption (expansion) flow time series	
	Cold demand usage and temperature time series.	
	Distance between the gas plant and cold circuits.	
	Average EER of chillers	
	Price of electrical energy.	
	Geographical location	
Output	Recovered energy [kWh/y]	
	Exchanger power [kW].	
	Size of tank accumulators (if necessary, its installation) [m ³]	
	Approximate cost of investment. [€]	
	Payback period [years]	
Main benefits	Reduction of electrical consumption for cold production.	
	Reduction of electricity costs	
	Reduction of pollutants and CO2 emissions.	
Main	Investment costs.	
"disadvantages"	It is an improvement measure that depends a lot on the gas and its conditions	
	of use (pressures, flows, etc.)	
	Not very mature technology with a limited number of suppliers	
Exceptions	I. There is lack of detailed time-series, but there are available	
	fragments of time-series or there are available some instantaneous	
	power values $ ightarrow$ The tool might allow to fill the missing values or	
	directly "built" some simulated thermal demand curves	
	II. Gas flow production time series and cold use time series have	
	different sampling frequency $ ightarrow$ The tool might allow to	
	"harmonize" both time series	

Page **44** of **78**

Table 18 Scenario 3.2.8 description

Scenario 3.2.8: Upgrade of low-grade waste heat by using heat		
pump in order to meet process heat demand		
Relevant User	Industry/ESCO	
Туре		
Main Objectives	Energetic Domain	
	⊠Reduction of primary energy consumption	☑Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	☑Increase utilization of energy from waste heat sources	☑Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	☑ Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	oxtimes Security of supply increase	
Relevant KPIs	primary energy reduction	
for evaluation	share of imported sources	
	CO2 emissions reduction	
	reduction of energy costs	
E	Economic KPIs (CAPEX/OPEX/PBP)	a the plant and not used due to its
Example Baseline case	low-grade waste heat is available in the plant and not used due to its temperature which is not suitable for any process	
Intervention /		ase the temperature of WH if a suitable
Technologies	sink for it is available. A match among a source and a sink has been identified	
	but temperature is not suitable for it.	increase (technological limite) the
	Therefore, a HP can be used to increase (technological limits) the temperature and the avoid fuel consumption should justify the electricity	
	used by the HP to meet the demand.	simption should justify the electricity
Requested	Technical parameters of the WH as ide	entified before
inputs	Technical parameter of the thermal de	
	Cost of the electricity	
	Fuel/source currently used to meet the	e identified demand and its cost

Deliverable 2.6 Scenario Definition

Page **45** of **78**

Output	Amount of low-grade waste heat used
	Reduction of fuel consumption (based on the current source)
	CO ₂ /GHG emission reduction
	Reduction of primary energy consumption
	Characteristics of the HP required
	Economic evaluation of the intervention (CAPEX/OPEX/PBP)
Main benefits	Possibility to evaluate the proposed substitution from the technical and
	economic perspective
Main	WH should be precisely characterised as well as the identified sink
"disadvantages"	A fair knowledge of the energy fluxes is required
Exceptions	None

Table 19 Scenario 3.2.9 description

Scenario 3.2.9: Waste heat recovery from existing refrigeration		
systems Relevant User	Industry	
Туре		
Main Objectives	Energetic Domain Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	⊠Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	⊠Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Payback time	•
for evaluation	Net present value Internal rate of return	

Deliverable 2.6 Scenario Definition

Page **46** of **78**

Example	Significant amount of waste heat rejected by industrial refrigeration systems	
Baseline case	in the following locations: i) heat of the desuperheating vapour; ii) heat of the	
	condensing vapour; iii) lubricating oil of screw compressors; iv) water cooling	
	of the heads of reciprocating compressors; v) water cooling of the electrical	
	motors. On the other hand, significant consumption of fossil fuels (natural	
	gas) for water heating and space heating.	
Intervention /	Installation of a heat exchanger between the compressor and the condenser	
Technologies	and/or an oil cooling heat exchanger to deliver heated water at 40-60°C	
	(domestic and service hot water). Installation of a condensing heat	
	exchanger for delivery of lower temperature water (≈25°C) for underfloor	
	heating or air heating for both temperature and humidity control (fan coils,	
	air conditioning). Use of the condensing waste heat in a water loop to drive	
	water-source heat pumps for space heating or high temperature heat pumps	
	for sterilizing and cleaning processes.	
Requested	Desuperheating and condensation heat loads and temperatures. Heat loads	
inputs	and temperatures of the oil/water used for cooling of the compressors and	
1	motors. Time variations of demand for hot water and space heating.	
Output	Mass flow rate and outlet temperature of the heated water. Cost of the heat	
	exchangers. Fraction of the heat demand for space and water heating	
	covered by waste heat recovery.	
Main benefits	Reduction of the natural gas consumption (and costs) associated with space	
	heating and water heating. Reduction of CO ₂ emissions.	
Main	Heating and refrigeration are required at the same time (e.g. supermarkets,	
"disadvantages"	dairies, butcheries, etc.). Moreover, the heating supply must be coincident	
5	with the demand (otherwise, one or more storage tanks will be needed).	
Exceptions	I. Lack of data for the temperatures of the waste heat rejected by	
	industrial refrigeration systems \rightarrow collection of data from the	
	literature for different types of systems (screw, reciprocating);	
	II. The user might want to use the waste heat from the refrigeration	
	systems in adsorption or absorption dehumidification systems,	
	which are not covered by the SO WHAT tool \rightarrow extension of the	
	technology database to include adsorption and absorption	
	dehumidification systems.	

Page **47** of **78**

Table 20 Scenario 3.2.10 description

Scenario 3.2.10: Recovery from Electric Chillers to produce medium-low temperature hot water (Preheating systems)		
Relevant User Type	Industry	
Main Objectives	Energetic Domain ⊠Reduction of primary energy consumption □Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources	□Reduction of final energy consumption □Increase share of RES □Reduction of energy consumption from conventional fuels
	Reduction of energy consumption from imported sources DHCN heat density reduction Environmental Domain	□DHCN thermal losses reduction □Operating hours increase
	CO2 reduction CO2 reduction CO2 reduction reduction CIncrease utilization of energy from waste heat sources	□Pollutants emission reduction □Increase share of RES
	Economic Domain Creation of economically feasible H&C scenarios Levelized cost of heat	☑ Operational costs reduction
	Social Domain □Energy poverty reduction □Security of supply increase	□Job increase
Relevant KPIs for evaluation	Fuel savings Cost savings CO₂ emissions reduction Payback period	
Example Baseline case	The desuperheating and condensation heat of the vapour exiting the compressor of the electrical chiller is rejected to the surrounding environment	
Intervention / Technologies	A desuperheater/condensing heat exchanger is installed downstream of the chiller's compressor, where the desuperheating heat and part of the condensation heat of the refrigerant are recovered for water heating. The heated water is stored in a tank for later use in the manufacturing process, cleaning processes and for sanitary purposes.	
Requested inputs	Capacity and COP of the electrical chi Temperature of the refrigerant at of temperature Effectiveness of the desuperheater/co Specific investment cost of the desuper	compressor outlet and condensation ondensing heat exchanger

Deliverable 2.6 Scenario Definition

Page **48** of **78**

Output	Heat recovered	
Ουίμοι		
	Temperature increase of water	
	Cost of the desuperheater/condensing heat exchanger	
Main benefits	Reduction of the energy required for domestic water heating	
	Reduction of the parasitic loads (fans) of the chiller	
	Reduction of the thermal pollution	
Main	Investment required due to the addition of the desuperheater/condensing	
"disadvantages"	heat exchanger. Limited temperature increases or limited heat load because	
	the condensing heat is typically available at low temperatures and the higher	
	quality desuperheating heat represents only a fraction of the condensing	
	heat. The water preheat may hinder the utilization of the latent heat of the	
	flue gases of a condensing natural gas boiler.	
Exceptions	I. The user does not know the internal parameters (temperature,	
Exceptions		
	pressure, refrigerant) of the electrical chiller \rightarrow typical parameters should be	
	provided by the software depending on the application of the electric chiller	
	(refrigeration, air conditioning);	
	II. The user is not interested in the utilization of the heat of	
	condensation but only in the desuperheating heat $ ightarrow$ the software must be	
	able to separate the two processes.	

Page **49** of **78**

Table 21 Scenario 3.2.11 description

Scenario 3.2.11: Cold Thermal Energy Storage integration for WHR inside a factory		
Relevant User	Industry	
Туре		
Main Objectives	Energetic Domain	
	☑Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	☑Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO₂ reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	☑Increase utilization of energy from waste heat sources	
	Economic Domain	
	☑ Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs for evaluation	Payback time Internal Rate of Return Net Present Value	
Example		through the chimney or unrecovered
Baseline case	from hot products cooled by ambient	air
Intervention /	0 . 0	absorption chiller. The residual heat of
Technologies	-	roducts is recovered in a (more or less
	conventional heat) recovery unit to generate hot water that drives the	
	absorption chiller. The chilled water is supplied to the air conditioning system (fan coil) and to the manufacturing process. A chilled water storage tank or a latent heat storage (ice, paraffin, etc.) acts as a buffer and supplies the necessary cooling to the user.	

Deliverable 2.6 Scenario Definition

Page **50** of **78**

Thermal parameters of the exhaust heat Thermal parameters of the water loop	
Time variation of the cooling load required by the manufacturing process and	
for air conditioning	
Electricity savings Economic KPIs	
Reduction of the electricity consumption for air conditioning and process	
cooling. Reduced size and investment of the absorption chiller due to the	
integration of cold storage.	
y load is the air	
conditioning load in the office (daily and seasonal pattern)	
ightarrow The user may	
pact of the cold	
stem; +	
rial (PCM) in the	
are gives some	
ance based on	
age.	

Page **51** of **78**

Table 22 Scenario 3.2.12 description

Scenario 3.2.	12: Optimize waste heat/c	old energy use
Relevant User Type	Industry/ESCO	
Main Objectives	Energetic Domain ⊠Reduction of primary energy consumption □Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources ⊠Reduction of energy consumption from imported sources □DHCN heat density reduction Environmental Domain ⊠CO2 reduction □Noise production reduction ⊠Increase utilization of energy from waste heat sources □Co2 reduction ⊡Increase utilization of energy from waste heat sources Economic Domain □Creation of economically feasible	 □Reduction of final energy consumption □Increase share of RES ☑Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction □Operating hours increase □Pollutants emission reduction □Increase share of RES
	H&C scenarios Levelized cost of heat Social Domain Energy poverty reduction Security of supply increase	⊠CO2 reduction cost □Job increase
Relevant KPIs for evaluation	Share of energy consumption met by recovered WH/C energy Shares of recovered WH/C energy used on-site and exported to district network Energy savings compared to baseline	
Example Baseline case	Main actor has already installed some WH/C recovery technologies which supply a share of its facilities energy demand, but wants to optimise their energy use	
Intervention / Technologies	 Shift of energy demand in order to better match WH/C energy recovery pattern with energy demand profile Scaling of WH/C energy source output in order to better match peak energy demand 	
Requested inputs	 Energy demand time series WH/C energy recovery time series WH/C energy consumption time series WH/C technology scaling constraints (maximum and minimum output capacity, ramping limits, time limits, other limiting factors) Energy demand shifting constraints (increase and reduction magnitude, duration and time limits) 	

Deliverable 2.6 Scenario Definition

Page **52** of **78**

Output	Line chart	
	Share of energy consumption met by WH/C recovery technology	
	Shares of recovered WH/C energy used on-site and exported to district	
	network	
	Energy savings	
Main benefits	Increased match between WH/C energy recovery pattern with energy	
	demand profile	
	Increased share of energy consumption met by WH/C technology	
	Increased share of recovered WH/C energy used on-site or exported to	
	district network	
	Increased energy savings	
Main	Possible reduced lifetime of installed WH/C recovery technology due to	
"disadvantages"	increased output	
	Uncertainty with regards shift of energy demand due to required changes in	
	human behaviour against usual patterns	
Exceptions	If the user does not provide at all, or partially, information about:	
	- Energy demand time series \rightarrow the tool might be able to approximate	
	energy demand time series, as based on utility bill data and other	
	57	
	inputs provided (e.g. operational schedules), through rough-cut	
	profiling approach	
	- WH/C energy recovery time series \rightarrow the tool might be able to	
	simulate WH/C energy recovery patterns	
	- WH/C energy consumption time series $ ightarrow$ the tool might be able to	
	simulate WH/C energy consumption profiles, assuming no energy	
	storage	
	- WH/C technology scaling constraints (maximum and minimum	
	output capacity, ramping limits, time limits, other limiting factors) \rightarrow	
	Standard constraints might be used as default inputs into SO WHAT	
	tool	
	LUUI	

Page **53** of **78**

4.4 Stage 4: Scenarios for Recover and Reuse waste heat/cooling to provide power at a factory level

Table 23 Scenario 4.1 de	Recover w h/c to generate	a nower for my facility
Relevant User	Industry/ESCO	e power for my facility
Туре		
Main Objectives	Energetic Domain	
Main Objectives	⊠Reduction of primary energy	⊠Reduction of final energy
	consumption	consumption
	□Reduction of useful energy demand	□Increase share of RES
	oxtimesIncrease utilization of energy from	⊠Reduction of energy consumption
	waste heat sources	from conventional fuels
	□Reduction of energy consumption _from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	Pollutants emission reduction
	□Noise production reduction	⊠Increase share of RES
	□Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	⊠CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Reduction of energy produced by trad	litional power plant
for evaluation	Fossil fuels use	
	Average Production Cost/MWh (el)	
	CAPEX/OPEX PBP	
Evenale		d characterised: temperature, profile,
Example Baseline case	and intermittency.	a enaluerensea. temperatore, prome,
Daselline Case	1	ies for its conversion into electricity is
	performed based on technical and eco	1
Intervention /	Multiple technologies are considered and compared to identify the best fit	
Technologies	for the utilisation of the WH.	
Requested	Waste heat characteristics as previous	
inputs	Electricity demand to evaluate whenever a surplus could be generated	
	Electricity cost/price	
	Available space for installation	

Deliverable 2.6 Scenario Definition

Page **54** of **78**

Output	Selection among multiple suitable technologies by comparison	
	Graphic of electricity produced based on the identified WH	
	Economic parameters (CAPEX, OPEX, PBP, etc.) calculated	
	Possible business model and opportunities to deploy the intervention	
Main benefits	Improve cost-effectiveness	
	Possibility to compare different options	
	Reduce CO ₂ emissions	
Main	Information on the WH stream must be known	
"disadvantages"		
Exceptions	I. Geometric info is optional	
	II. Electricity cost/price is needed for the economic calculations, basic	
	output on suitable technologies can be provided without taking them into	
	consideration	

Table 24 Scenario 4.2 description

Scenario 4.2: Add solar panels/solar thermal collectors on my site.		
Relevant User Type	Industry/ESCO/Municipality	
Main Objectives	Energetic Domain Reduction of primary energy consumption Reduction of useful energy demand	□Reduction of final energy consumption □Increase share of RES
	□Increase utilization of energy from waste heat sources □Reduction of energy consumption from imported sources	□Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	□CO2 reduction □Noise production reduction □Increase utilization of energy from	□Pollutants emission reduction □Increase share of RES
	waste heat sources Economic Domain □ Creation of economically feasible H&C scenarios	□Operational costs reduction
	 Levelized cost of heat Social Domain Energy poverty reduction 	□CO2 reduction cost □Job increase
	□Security of supply increase	

Deliverable 2.6 Scenario Definition

Page **55** of **78**

-	laure at an at	
Relevant KPIs		
for evaluation	NPV	
	CO₂ emission reduction	
	Increase electrification	
Example	Industrial site with a good availability of solar radiation and plenty of space	
Baseline case	on the top of the roofs (flat or curved) for installation of PV panels.	
Intervention /	Installation of photovoltaic panels on the factory roofs. The electricity	
Technologies	produced could be used for self-consumption in the factory or could be	
reennologies	totally sold to a third party (i.e. the national grid) or could be mixed business	
	model (self-consumption and grid-injection). Alternatively, the electricity	
	produced can be used to electrify thermal processes at the industrial site.	
Requested	Performance of PV panels (e.g. conversion efficiency)	
inputs	CAPEX of PV	
mpors	Heat and electricity demand profiles, possibly electricity prices profiles	
	GIS mapping of the industrial site (e.g. roof area)	
Output	Technical potential for PV installation as well as location	
ootpot	Investment cost	
	Electricity generation, including share of electricity from PV generation	
Main benefits	Increased renewable generation from solar	
	Reduce fuel consumption from fossil fuels	
	Reduced import of electricity from electricity grid	
	Reduced CO_2 emission	
Main	Additional complexity due to the need to mitigate fluctuation in solar	
"disadvantages"	irradiation and hence in electricity production. This is expected to be	
alsaavantages	particularly relevant in industrial processes, which need uninterrupted supply	
	of electricity.	
Exceptions	I. The data on the tilt and azimuth angles of the planned PV	
	installation are available \rightarrow The software must be able to calculate	
	the solar irradiation incident on the PV panels starting from the	
	hourly data of global solar irradiation;	
	II. The user might want to increase the percentage of self-	
	consumption by installing an electrical energy storage \rightarrow the	
	software must embed a lumped model of electrical energy storage	
	(e.g. batteries) which gives as output the roundtrip efficiency and	
	the investment cost;	
	III. The subsidy schemes for electricity production from PV	
	generators are various and country-specific \rightarrow the software user	
	should be able to include them in the calculation of the economic	
	performance metrics.	
	performance metrics.	

Page **56** of **78**

Table 25 Scenario 4.3 description

Scenario 4.3: Maximise the use of renewable energy I have		
installed.		
Relevant User	Industry/ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
	☑ Reduction of primary energy consumption	□Reduction of final energy consumption
	□ Reduction of useful energy demand	⊠Increase share of RES
	□Increase utilization of energy from waste heat sources	☑Reduction of energy consumption from conventional fuels
	☑Reduction of energy consumption from imported sources	□DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO₂ reduction	Pollutants emission reduction
	□Noise production reduction	⊠Increase share of RES
	□Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	⊠CO₂ reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Share of energy consumption met by renewable energy source Shares of produced renewable energy used on-site and exported to grid Energy savings compared to baseline	
Example Baseline case	Main actor has already installed some renewable energy source technologies which supply a share of its facilities energy demand, but wants to optimise renewable energy use	
Intervention / Technologies	 Shift of energy demand in order to better match renewable energy production pattern with energy demand profile Scaling of renewable energy source output in order to better match peak energy demand 	
Requested inputs	 Energy demand time series Renewable energy supply time series Renewable energy consumption time series Renewable energy source technology scaling constraints (maximum and minimum output capacity, ramping limits, weather-dependence, time limits) 	
	 Energy demand shifting c magnitude, duration and time 	onstraints (increase and reduction limits)

Deliverable 2.6 Scenario Definition

Page **57** of **78**

Output	Line chart	
	Share of energy consumption met by renewable energy source	
	Shares of produced renewable energy used on-site and exported to grid	
	Energy savings	
Main benefits	Increased match between renewable energy production pattern with energy demand profile Increased share of energy consumption met by renewable energy source Increased share of produced renewable energy used on-site Reduced share of produced renewable energy exported to grid Increased energy savings	
Main	Possible reduced lifetime of installed renewable energy source technology	
"disadvantages"	due to increased production output	
, , , , , , , , , , , , , , , , , , ,	Uncertainty with regards shift of energy demand due to required changes in	
	human behaviour against usual patterns	
Exceptions	 If the user does not provide at all, or partially, information about: Energy demand time series → the tool might be able to approximate energy demand time series, as based on utility bill data and other inputs provided (e.g. operational schedules), through rough-cut profiling approach Renewable energy supply time series → the tool might be able to simulate renewable energy production Renewable energy consumption time series → the tool might be able to simulate renewable energy consumption profiles, assuming no renewable energy storage Renewable energy source technology scaling constraints (maximum and minimum output capacity, ramping limits, weather-dependence, time limits) → Standard constraints might be used as default inputs into SO WHAT tool 	

Page **58** of **78**

Table 26 Scenario 4.4 description

Scenario 4.4:	Optimise the mix of renev	vable energy installations	
at my site			
Relevant User Type	Industry/ESCO/Municipality		
Main Objectives	Energetic Domain ☑ Reduction of primary energy consumption □ Reduction of useful energy demand □ Increase utilization of energy from waste heat sources ☑ Reduction of energy consumption from imported sources □ DHCN heat density reduction Environmental Domain ☑ CO2 reduction □ Increase utilization of energy from waste heat sources □ DHCN neat density reduction Environmental Domain ☑ CO2 reduction □ Increase utilization of energy from waste heat sources Economic Domain □ Creation of economically feasible H&C scenarios □ Levelized cost of heat	 □Reduction of final energy consumption ⊠Increase share of RES ⊠Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction □Operating hours increase □Pollutants emission reduction ⊠Increase share of RES □Operational costs reduction ⊠CO2 reduction cost 	
	Social Domain	□Job increase	
Relevant KPIs for evaluation	Fraction of electricity, heating or cooling demand covered by renewables. CO ₂ emissions reductions compared to the baseline case. Payback time, net present value, internal rate of return.		
Example Baseline case	Use of grid electricity to cover the electricity demand of the industry or the district. Use of fossil fuels (e.g. natural gas) to cover the heating demand and grid electricity to cover the cooling demand. Good availability of local renewable energy sources (solar, wind, geothermal and biomass energy) which are either not used or only partially used for energy production. Availability of space (e.g. roofs of buildings, warehouses) for installation of new bulky equipment.		
Intervention / Technologies	Installation of PV panels and/or wind turbines for electricity production. Installation of flat plate or evacuated solar collectors for water/space heating. Concentrating solar collectors (Fresnel, parabolic trough) for production of process heat or cooling through sorption chillers. Ground source heat pumps for water/space heating. Biomass boilers for production of steam or hot water. Thermal and electrical storage to solve any mismatch between energy supply and demand.		

Deliverable 2.6 Scenario Definition

Page **59** of **78**

Deguastad	Historical hourly data on ambient temperature. Hourly data of color global	
Requested inputs Output	Historical hourly data on ambient temperature. Hourly data of solar global irradiation (for PV panels and non-concentrating collectors) and direct irradiation (for concentrating collectors). Performance and cost data of PV panels and solar collectors. Hourly data on wind speed and characteristic curves and costs of wind turbines. Data on ground temperature at different depths for installation of geothermal probes. Data on type and amount of biomass locally available. Data on the space available for installation of renewable plants within the industrial site or district. Availability of any waste heat source. Data about the demand of electricity, heating and cooling. Electricity generated by the PV generator or wind turbines and time variation. Heating load and temperature produced by the geothermal heat	
	pump, solar collector or biomass boiler. Cooling duty of the absorption	
Main benefits	chiller. Use of renewable energy sources for production of electricity, heating and	
	cooling in place of fossil fuels or grid electricity. Reduction of fossil fuels consumption and CO_2 emissions. Distributed generation of electricity. Possible positive synergies between waste heat and renewable energy sources (e.g. to increase the temperature of waste heat).	
Main	Intermittent availability of solar and wind energy. High costs of small	
"disadvantages"	renewable energy plant (e.g. wind turbines, concentrated solar) in comparison to centralized plants. Limited amount of resources in many sites (e.g. solar energy in northern countries) and/or limited space for installation of renewable plants. Difficult social acceptance for installation of wind turbines or biomass plants in districts. High costs of the electrical storage or reduced profitability when the generated electricity is fed to the grid. The integration between waste heat source and renewable energy source may complicate the design and operation of the plant.	
Exceptions	 I. Lack of availability of models for renewable technologies within SO WHAT → need to establish a link with the libraries of models already developed in other software; II. Electrical energy storage not covered by the SO WHAT 	
	II. Electrical energy storage not covered by the SO WHAT technologies \rightarrow add a lumped model for e.g. batteries;	
	 III. Some of the renewable energies (hydro, biogas, etc.) not covered by SO WHAT; 	
	IV. Some hybrid systems combining waste heat and renewables, or two/more renewables together may not be fully described by the set of SO WHAT technologies	

Page **60** of **78**

4.5 Stage 5: Scenarios for Recover and Reuse waste heat/cooling at a community level

Table 27 Scenario 5.1 description

Scenario 5.1:	Match local potential su	pply of waste heat with	
local demand			
Relevant User Type	Industry/ESCO/Municipality		
Main Objectives	Energetic Domain Reduction of primary energy consumption Reduction of useful energy demand Reduction of useful energy demand Increase share of RES Increase utilization of energy from waste heat sources Reduction of energy consumption from imported sources DHCN heat density reduction Environmental Domain CO2 reduction		
	 □Noise production reduction □Increase utilization of energy from waste heat sources Economic Domain □Creation of economically feasible H&C scenarios □Levelized cost of heat 	□Operational costs reduction	
	Social Domain □Energy poverty reduction ⊠Security of supply increase	□Job increase	
Relevant KPIs for evaluation	Share of heat met by WH/C resource Shares of WH/C resource exported to DHN/DCN Energy savings compared to baseline Additional revenues compared to baseline Payback period [years]		
Example Baseline case	Main actors want to know the share of heat demand from a group of nearby buildings, or from a district heating network (DHN), that can be met through the reuse of the excess waste heat/cold (WH/C) resource available from an industrial site that is located in the neighbourhood.		
Intervention / Technologies	Connection to an existing district heating or cooling network (DHN or DCN) Construction of a new DHN or DCN Expansion of a DHN or DCN Upgrade of a DHN or DCN, e.g. increase in distribution capacity Shift of heat demand in order to better match WH/C resource availability profile with energy demand profile		

Deliverable 2.6 Scenario Definition

Page **61** of **78**

Distance to closest DHN/DCN	
Distribution capacity of closest DHN/DCN	
Connection status to closest DHN/DCN	
Heat demand time series	
Heat demand quality constraints (e.g. reclamation grade, temperature	
range, heat capacity)	
Heat demand shifting constraints (increase and reduction magnitude,	
duration and time limits)	
Industrial site Energy Sankey Diagram with list of WH/C types, sources,	
actual sinks and embedded energy	
Industrial site WH/C resource availability time series	
Line chart	
Share of heat demand met by reuse of WH/C resource available	
Energy savings	
Approximate cost of investment [€] (e.g. connection to, or construction or	
expansion or upgrade of DHN or DCN)	
Payback period [years]	
Economic revenues	
Increased energy savings compared to baseline	
Investment costs	
Uncertainty with regards revenues	
DHN/DCN connection / construction / expansion / upgrade delays	
Uncertainty with regards shift of heat demand due to required changes in	
human behaviour against usual patterns	
Uncertainty with regards WH/C resource availability	
If the user does not provide at all, or partially, information about:	
- Distance to, distribution capacity and connection status of closest	
DHN/DCN $ ightarrow$ the tool might be able to retrieve automatically such	
information from publicly available database, or to focus analysis on	
the share of heat demand that could be met by WH/C resource,	
irrespective of DHN/DCN status and characteristics	
- Heat demand time series $ ightarrow$ the tool might be able to approximate	
heat demand time series, as based on output from community	
energy master planning tool such as the IES iCD platform	
- Heat demand quality and shifting constraints $ ightarrow$ Standard	
constraints might be used as default inputs into SO WHAT tool	

Page **62** of **78**

Table 28 Scenario 5.2 description

Scenario 5.2: Thermal Storage evaluation for WH integration				
into DH networks				
Relevant User	Industry/ESCO/Municipality			
Туре				
Main Objectives	Energetic Domain			
	⊠Reduction of primary energy □Reduction of final energy			
	consumption consumption			
	Image: Construction of useful energy demand Image: Construction of RES			
	□Increase utilization of energy from waste heat sources	☑Reduction of energy consumption from conventional fuels		
	□Reduction of energy consumption from imported sources	DHCN thermal losses reduction		
	DHCN heat density reduction	□Operating hours increase		
	Environmental Domain			
	⊠CO2 reduction	□Pollutants emission reduction		
	□Noise production reduction	□Increase share of RES		
	□Increase utilization of energy from waste heat sources			
	Economic Domain			
	⊠Creation of economically feasible □Operational costs reduction H&C scenarios			
	□Levelized cost of heat □CO2 reduction cost			
	Social Domain			
	□Energy poverty reduction □Job increase			
	Security of supply increase			
Relevant KPIs	Energy saving compared to baseline			
for evaluation	CO ₂ emission abatement compared to baseline			
Example	Payback period, net present value, internal rate of return Existing industry with significant unused waste heat potentials during the			
Baseline case	warm season. Existing district heating system with a short-term (few storage			
Dasenne case	hours) thermal energy storage.			
Intervention /	Installation of a seasonal (sensible or latent heat) thermal energy storage to			
Technologies	shift the industrial waste heat from the warm to the cold season, making it			
	available to the district heating network. Strategic daily operation of the			
	seasonal storage that is discharged at high peak load times (e.g. in the early morning) to avoid as much as possible the use of natural gas boilers. Optimal			
	coordination with other heat generation plants (e.g. combined heat and			
	power plants) connected to the district heating network, which could take			
	advantage of the seasonal thermal storage.			
Requested	Excess waste heat production time-se			
inputs	District heat thermal demand time-series			
	Values of maximum peak thermal power demand			
	Values of maximum allowed "size" or "price" for the thermal storage			
	Storage type (sensible, latent, thermo			

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page **63** of **78**

Output	Thermal performance and cost of the storage system	
	Fossil fuel (natural gas) savings	
Main benefits	Reduction of the consumption of fossil fuels	
	Reduction of the pollutants and CO ₂ emissions	
	Economic revenues	
Main	Investment costs	
"disadvantages"	Required space	
Exceptions	 There is lack of detailed time-series, but there are available fragments of time-series or there are available some instantaneous power values → The tool might allow to fill the missing values or directly "built" some simulated thermal demand curves; WH production time series and DH time series have different sampling frequency → The tool might allow to "harmonize" both time series. 	

Table 29 Scenario 5.3 description

Scenario 5.3: WHR from Air Compressors for heat into District Heating Network			
Relevant User Type	Industry/ESCO		
Main Objectives	Energetic Domain Reduction of primary energy consumption	□Reduction of final energy consumption	
	□Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources	□Increase share of RES □Reduction of energy consumption from conventional fuels	
	□Reduction of energy consumption from imported sources	DHCN thermal losses reduction	
	DHCN heat density reduction Environmental Domain	□Operating hours increase	
	⊠CO2 reduction	□Pollutants emission reduction	
	□Noise production reduction ⊠Increase utilization of energy from waste heat sources	□Increase share of RES	
	Economic Domain Creation of economically feasible H&C scenarios	⊠Operational costs reduction	
	Levelized cost of heat	□CO2 reduction cost	
	Social Domain Energy poverty reduction Security of supply increase	□Job increase	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page **64** of **78**

Relevant for evaluationPower compressor vs power recovery (at the water use temperature Recoverable energy vs distance compressors to hot water circuits. Energy saving compared to baseline. CO2 emission abatement compared to baseline Payback period.Example Baseline caseExisting industry facility that is equipped with high-power air com and its processes require medium-temperature water or relatively in hot domestic water consumption. The same consideration applies refrigerant compressors of the split cooling machines.	pressors nportant	
Energy saving compared to baseline.CO2 emission abatement compared to baselinePayback period.ExampleBaseline caseBaseline case	nportant	
CO2 emission abatement compared to baseline Payback period.Example Baseline caseExisting industry facility that is equipped with high-power air com and its processes require medium-temperature water or relatively in 	nportant	
Payback period.Example Baseline caseExisting industry facility that is equipped with high-power air com and its processes require medium-temperature water or relatively in hot domestic water consumption. The same consideration applies	nportant	
Example Baseline caseExisting industry facility that is equipped with high-power air com and its processes require medium-temperature water or relatively in hot domestic water consumption. The same consideration applies	nportant	
Baseline case and its processes require medium-temperature water or relatively in hot domestic water consumption. The same consideration applies	nportant	
hot domestic water consumption. The same consideration applies		
	a fau the	
refrigerant compressors of the split cooling machines.	s for the	
Intervention / The installation of an oil-water heat exchanger in the compressor oil	l cooling	
Technologies circuit will be required. Most compressors manufacturers offer	a kit to	
recover the rejected heat, but it is also possible to use generic kits in	n case of	
non-availability of the manufacturer's kit.		
The measure may also require storage in the water side dependin	g on the	
hourly profile of the hot thermal demand and the type of com	pressors	
(modulated or start-stop).		
Requested Compressor brand, model and power.		
inputs Time series of compressed air demand (or compressor power	r energy	
consumption profile)		
Time series of hot water energy demand		
Distance between compressor and hot water production facility.		
Price of thermal energy or current cost for the industry of produ	cing the	
required hot water	5	
Output Heat exchanger power		
Minimum size of tank accumulators (inertial tanks) [m3]		
Annual energy saved. [kWh/y]		
Approximate cost of investment [€]		
Payback period [years]		
Main benefits Reduction of the consumption of fossil fuels		
Reduction of the pollutants and CO ₂ emissions		
Improvement in oil cooling, especially in summer		
Economic revenues (the most important for an ESCO)		
Main Investment costs.		
"disadvantages" Required space.		
Increased electricity consumption due to the additional water pump	ping.	

Page **65** of **78**

Exceptions	I.	There is lack of detailed time-series, but there are available fragments of time-series or there are available some instantaneous power values \rightarrow The tool might allow to fill the missing values or directly "built" some simulated thermal demand curves.
	11.	Power compressor time series and water use time series have different sampling frequency The tool might allow to "harmonize" both time series
	111.	The current cost of producing hot water is not known (for instance, hot water is produced from steam in a centralized system without specific energy meters) \rightarrow The tool might have an auxiliary calculator to provide a rough estimation based on providing data like the gas prices, the type of boiler and other technical data.

Table 30 Scenario 5.4 description

Scenario 5.4:	Preliminary analysis of the	e cost related to DHN link	
Relevant User Type	Industry/ESCO/Municipality		
Main Objectives			
	☑Reduction of primary energy consumption	☑Reduction of final energy consumption	
	□Reduction of useful energy demand	□Increase share of RES	
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels	
	☑Reduction of energy consumption from imported sources	⊠DHCN thermal losses reduction	
	☑DHCN heat density reduction	□Operating hours increase	
	Environmental Domain		
	⊠CO2 reduction	☑Pollutants emission reduction	
	□Noise production reduction	⊠Increase share of RES	
	□Increase utilization of energy from waste heat sources		
	Economic Domain		
	☑ Creation of economically feasible H&C scenarios	⊠ Operational costs reduction	
	⊠Levelized cost of heat	⊠CO₂ reduction cost	
	Social Domain		
	⊠Energy poverty reduction	□Job increase	
	Security of supply increase		

Deliverable 2.6 Scenario Definition

Page **66** of **78**

CAPEX for the installation		
OPEX		
PBP or other relevant economic indicators		
Technical suitability		
There is an existing DH(C)N powered by any source, a WH/C source has been		
identified and characterised		
Creation of a link between the network and the producer: basic information		
on the heat exchangers and the piping can be provided according to the		
characteristics of the WH stream(s).		
Strong focus on the business case and options (WP3) to reach a viable		
solution.		
DHN characteristics: energy demand and current energy production, cost of		
energy, temperature		
WH/C characteristics known: temperature, intermittency, available		
power/energy, heat medium		
Distance among the two of them		
I. Default values for heat exchangers and piping will be provided in case		
the user is not able to provide more accurate data.		
II. Distance between the source and the sink can be calculated based on		
a map if not available		

Table 31 Scenario 5.5 description

Scenario 5.5: Recover waste heat from a site and transport it for use in other buildings without the need of a DH network or pipes.			
Relevant User	Industry/ESCO		
Туре			
Main Objectives	Energetic Domain		
	☑Reduction of primary energy consumption	□Reduction of final energy consumption	
	□Reduction of useful energy demand	□Increase share of RES	
	☑Increase utilization of energy from □Reduction of energy consumate heat sources Increase utilization of energy from conventional fuels		
	⊠Reduction of energy consumption from imported sources	□DHCN thermal losses reduction	
	DHCN heat density reduction	□Operating hours increase	
	Environmental Domain		
	⊠CO2 reduction	□Pollutants emission reduction	
	□Noise production reduction	□Increase share of RES	
	☑Increase utilization of energy from waste heat sources		

Deliverable 2.6 Scenario Definition

Page **67** of **78**

	Economic Domain	
		[™] Operational costs reduction
	☑Creation of economically feasible H&C scenarios	⊠Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	□Job increase
	□Security of supply increase	
Relevant KPIs	Payback time	
for evaluation	Internal Rate of Return	
	Net Present Value	
	Energy savings (site 2)	
	Energy sold (site 1)	
	Total CO₂ budget	
Example		is excess heat not currently recovered
Baseline case		rrently satisfied with fossil-fuel based
	solutions or new source of heat dema	
Intervention /		em installed on a road truck (or a barge
Technologies	eventually) to connect thermally a waste heat source and a heat sink. The	
	residual heat from the source (site 1) is stored in the mobilized thermal	
	energy storage (M-TES). The heat is then transported to the heat sink	
	(industrial or another site) where it is used, i.e. site 2. Site 2 can be either	
	another industrial facility, a domestic user of an existing district heating network. During charging, the M-TES is parked at the site 1 and it is thermally	
	connected to the waste heat source. The latter is typically in the form of flue	
	gases (or hot liquid stream). Once fully charged with thermal energy the road	
	truck transports the M-TES unit to the Industrial Site 2 where it is discharged	
	to provide thermal energy.	
Requested		(LHTES) or thermochemical energy
inputs	Storage (TCS) in mobile for should be considered because they offer higher	
	energy density and thus reduced storage volume. The latter is a key factor	
	since the maximum allowed volume is	the one of a typical shipping container
	on a road truck.	
Output	Thermal parameters of the exhaust he	at at the site 1 (temperature, flow rate,
	pressure, etc), including possible time	e variation or time availability window
	during the day.	
Main benefits		k at site 2 (heat demand, heat sink
		variation of the heat demand or time
	windows during which the heat is nee	
Main		gy storage density, maximum energy
"disadvantages"		(€/KWh), cost of transportation (e.g.
	-	ciated to the transportation, distance
	(km) between Industrial site 1 and site	2.

Page **68** of **78**

Exceptions	Ι.	The user might know the latent heat storage material and melting temperature, but they do not know the storage energy density or vice versa \rightarrow the software should embed a Table which provides the
	11.	main property data for a set of phase change materials; The thermal power demand of Site 2 is high and the user is afraid that it cannot be met by the discharging process of the mobilized storage \rightarrow the tool should guide in the proper selection of the storage material by taking into account also the power density;
	111.	There might be lack of information about the time series of the Site 2 thermal demand. However, if it is known that the Site 2 is e.g. a big residential building its thermal demand time series can be obtained through weather data combined with building simulation.

Table 32 Scenario 5.6 description

Scenario 5.6 network	: Use of absorption chill	ers in a district heating
Relevant User Type	ESCO	
Main Objectives	Energetic Domain □Reduction of primary energy consumption □Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources ⊠Reduction of energy consumption from imported sources □DHCN heat density reduction	 □Reduction of final energy consumption □Increase share of RES □Reduction of energy consumption from conventional fuels □DHCN thermal losses reduction ⊠Operating hours increase
	Environmental Domain CO2 reduction Noise production reduction Sincrease utilization of energy from waste heat sources	Pollutants emission reduction Increase share of RES
	Economic Domain ⊠ Creation of economically feasible H&C scenarios □Levelized cost of heat Social Domain □Energy poverty reduction ⊠ Security of supply increase	□Operational costs reduction □CO2 reduction cost □Job increase
Relevant KPIs for evaluation	Energy savings compared to baseline Additional revenues compared to base Payback period [years]	eline

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847097

Deliverable 2.6 Scenario Definition

Page **69** of **78**

Example Baseline case	Main actors want to take advantage of available heating resources in a district heating system for cooling purposes during the summer, such as potential waste heat sourced from connected industrial sites, or from other connected sources such as boilers, thus allowing for an increase in revenues during the summer and reducing the payback period of the installation	
Intervention / Technologies	Installation of absorption chiller in existing DHN	
Requested inputs	DHN heating/cooling demand time series	
Output	DHN heating sources time series, availability and levelised cost of energy supply	
Main benefits	Conventional cooling systems levelised cost of energy supply	
Main	Absorption chiller capacity [kW]	
"disadvantages"		
Exceptions	 If the user does not provide at all, or partially, information about: Distance to, distribution capacity and connection status of closest DHN/DCN → the tool might be able to retrieve automatically such information from publicly available database, or to focus analysis on the share of heat demand that could be met by WH/C resource, irrespective of DHN/DCN status and characteristics Heat demand time series → the tool might be able to approximate heat demand time series, as based on output from community energy master planning tool such as the IES iCD platform Heat demand quality and shifting constraints → Standard constraints might be used as default inputs into SO WHAT tool 	

Page **70** of **78**

Table 33 Scenario 5.7 description

Scenario 5.7:	Heat Pumps with PV pane	els into DH network
Relevant User Type	ESCO	
Main Objectives	Energetic Domain Reduction of primary energy consumption	□Reduction of final energy consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	□Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	□Increase utilization of energy from waste heat sources	
	Economic Domain	
	□Creation of economically feasible H&C scenarios	☑Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	Energy poverty reduction	⊠ Job increase
	□Security of supply increase	
Relevant KPIs for evaluation	Fuel savings Cost savings NPV CO₂ emission reduction	
Example Baseline case	DH system located in a site with good of space for installation of PV ge throughout the year and mostly cover	, 3
Intervention / Technologies	combined with solar thermal to produ	the possibility of using heat pumps uce hot water or to preheat the return el consumption of the DH boilers. The ng using electricity from the grid.
Requested inputs	Supply/return temperature of DH COP of HPs CAPEX/OPEX of HPs Performance of PV panels (e.g. conve CAPEX and volume (m ³) of TES Heat and electricity demand profiles,	

Deliverable 2.6 Scenario Definition

Page **71** of **78**

_		
Output	HP capacity	
	PV capacity	
	RES generation	
	Primary energy consumption	
	Electricity consumption	
Main benefits	Increased renewable generation from solar	
	Reduce fuel consumption from DH boilers	
	Reduced operating costs due to exploitation of electricity prices	
	Increased flexibility in operation due to TES installation	
	Reduced CO ₂ emissions	
Main	Additional complexity due to the need of coordinating the operation of heat	
"disadvantages"	pumps and the fluctuation of electricity generation from PVs and thermal energy storage.	
	The scenario likely involves the use of large-scale HPs; location of the HPs is	
	likely to be constrained by the configuration of the district considered and in	
	particular by the availability of heat source such as sewage and ambient	
	waters	
Exceptions	I. The user does not know the COP of the heat pump, but they know	
	the temperature of the waste heat source and the supply	
	temperature \rightarrow the software provides an estimate of the COP	
	based on the temperature lift and the type of heat pump;	
	II. The user wants to evaluate the reduction of the natural gas	
	consumption of the boiler due to water preheating $ ightarrow$ a lumped	
	model of a boiler should be made available to assess the reduction	
	of the operating costs.	

Page **72** of **78**

Table 34 Scenario 5.8 description

Scenario 5.8: Conduct a cost benefit analysis of expanding a district h/c network or constructing a new one, to connect to		
newly identified waste heat sources and users		
Relevant User	ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
	□Reduction of primary energy	□Reduction of final energy
	consumption	consumption
	□Reduction of useful energy demand	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	Reduction of energy consumption from conventional fuels
	□Reduction of energy consumption from imported sources	DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	□CO2 reduction	□Pollutants emission reduction
	□Noise production reduction	□Increase share of RES
	⊠Increase utilization of energy from waste heat sources	
	Economic Domain	
	⊠Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	□CO2 reduction cost
	Social Domain	
	⊠Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs for evaluation	Share of heat met by WH/C resource Shares of WH/C resource exported to Energy savings compared to baseline Additional revenues compared to base Payback period [years]	
Example Baseline case	buildings, or from a district heating ne	f heat demand from a group of nearby etwork (DHN), that can be met through old (WH/C) resource available from an ighbourhood.
Intervention / Technologies	Connection to an existing district heat	ting or cooling network (DHN or DCN)
Requested inputs	Construction of a new DHN or DCN	
Output	Expansion of a DHN or DCN	
Main benefits	Upgrade of a DHN or DCN, e.g. increa	se in distribution capacity
L		

Deliverable 2.6 Scenario Definition

Page **73** of **78**

Main	Shift of heat demand in order to better match WH/C resource availability	
"disadvantages"	profile with energy demand profile	
Exceptions	 If the user does not provide at all, or partially, information about: Distance to, distribution capacity and connection status of closest DHN/DCN → the tool might be able to retrieve automatically such information from publicly available database, or to focus analysis on the share of heat demand that could be met by WH/C resource, irrespective of DHN/DCN status and characteristics Heat demand time series → the tool might be able to approximate heat demand time series, as based on output from community energy master planning tool such as the IES iCD platform Heat demand quality and shifting constraints → Standard constraints might be used as default inputs into SO WHAT tool 	

4.6 Stage 6: Scenarios for Recover and Reuse waste heat/cooling to provide power at a community level.

Table 35 Scenario 6.1 description

	Recovery of industrial WH the grid or local communi	, ,
Relevant User Type	Industry/ESCO/Municipality	
Main Objectives	Energetic Domain ⊠Reduction of primary energy consumption □Reduction of useful energy demand ⊠Increase utilization of energy from waste heat sources □Reduction of energy consumption from imported sources	 Reduction of final energy consumption Increase share of RES Reduction of energy consumption from conventional fuels DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	 ☑ CO2 reduction ☑ Noise production reduction ☑ Increase utilization of energy from waste heat sources 	□Pollutants emission reduction □Increase share of RES
	Economic Domain ⊠Creation of economically feasible H&C scenarios □Levelized cost of heat	□Operational costs reduction ⊠CO2 reduction cost

Deliverable 2.6 Scenario Definition

Page **74** of **78**

	Social Domain	
	Energy poverty reduction	□Job increase
	Security of supply increase	
Relevant KPIs	Reduction of waste heat energy compared to baseline [kWh]	
for evaluation	Additional electricity generation compared to baseline [kWh]	
	Additional electricity exported to grid	compared to baseline [kWh]
	Electricity generation efficiency comp	ared to generator design efficiency
	Additional revenues compared to base	eline
	Payback period [years]	
Example	Existing industry with processes that	emit high thermal capacity waste heat
Baseline case		me in combustion processes or steam
Dasenne case	from steam generation plants.	·
Intervention /		ilisation for generation of electricity by
Technologies	ORC-processes	5 , , , ,
. comorogico		ation for generation of electricity by
	steam processes	5
Requested	Waste heat medium type (e.g. fume, s	steam)
inputs	Waste heat thermal capacity	,
mpors	Waste heat temperature range	
	Time series of waste heat flow rate an	d temperature
	Grid connection maximum export cap	
	Electricity price	
Output	Electricity generator type	
ootpot	Electricity generator size and efficiency range [kW - %]	
	Annual electricity generation [kWh]	
	Approximate cost of investment [€]	
	Payback period [years]	
	Planning permission need	
Main benefits	Economic revenues (the most importa	ant for an ESCO)
Main	Investment costs	
"disadvantages"	Uncertainty with regards revenues	
uisauvantayes	Grid code constraints	
	Increased operational costs and upskilling of manpower	
	Required space for installation of new process	
		exhaust process, with increased risk of
	_	ney that can reduce its useful life and
	have a negative environmental impact	
Exceptions	If the user does not provide at all, or p	
Exceptions		v rate and temperature 🛛 offer user to
	analyse scenario H-o1 and/or H13	
	-	port capacity and electricity price 🛛 the
	-	trained analysis in terms of maximum
	export capacity, and based on default	-
	- Waste heat medium type, thermal capacity and temperature range Standard values for identical industrial site category might be retrieved from	
	database and used as default inputs in	10 SO WHAT 1001

Page **75** of **78**

Table 36 Scenario 6.2 description

Scenario 6.2:	RES potential evaluation	
Relevant User	ESCO/Municipality	
Туре		
Main Objectives	Energetic Domain	
-	☑ Reduction of primary energy _consumption	⊠Reduction of final energy consumption
	□Reduction of useful energy demand	⊠Increase share of RES
	☑Increase utilization of energy from waste heat sources	☑Reduction of energy consumption from conventional fuels
	Reduction of energy consumption from imported sources	DHCN thermal losses reduction
	DHCN heat density reduction	□Operating hours increase
	Environmental Domain	
	⊠CO2 reduction	☑Pollutants emission reduction
	□Noise production reduction	⊠Increase share of RES
	☑Increase utilization of energy from waste heat sources	
	Economic Domain	
	⊠Creation of economically feasible H&C scenarios	□Operational costs reduction
	□Levelized cost of heat	⊠CO2 reduction cost
	Social Domain	
	□Energy poverty reduction	□Job increase
	\boxtimes Security of supply increase	
Relevant KPIs for evaluation	RES share Size of RES plant Primary energy saving compared to be	
	CO2 emission abatement compared to Payback period Fossil fuels reduction	o baseline
Example Baseline case	No RES already installed or a reduced the potential for thermal RES in the ar	d amount. The user wants to evaluate rea and electrical ones.

Deliverable 2.6 Scenario Definition

Page **76** of **78**

Intervention /	Evaluation of RES potential, the potential from the higher level (total	
Technologies	available to technical is examined):	
	• PV	
	• (micro wind)	
	Solar thermal	
	Biomass	
	• (CHP)	
	Geothermal	
	• (heat-pumps)	
	To make the analysis effective, two aspect should be considered:	
	1. We are considering a group of building therefore the specificity of	
	each of them are hidden in one unique profile.	
	2. The analysis should be performed at hourly level since the big fluctuation of some RES within a day	
	Therefore, by coupling the aggregated hourly profile of the demand with the hourly profile from RES the analysis will result less detailed.	
Deguasted		
Requested	Geographical location	
inputs	Space available for the installation	
	Characteristics of demand (thermal, temperature)	
	Energy consumption profile city/district/industry	
	Cost of energy produced / Price of energy	
	Incentives for RES installation Other constraints	
0 1 4 1		
Output	• Available potential in terms of power and energy for various RES	
	sources	
	• Dimension of RES installed: kW of the plant potentially to be	
	installed	
	• CAPEX and OPEX of solutions, based on the plant dimension and	
	calculated info	
	Expected production profile over the day and yearly	
Main benefits	Possibility to analyse in parallel several types of RES	
	High-level and detailed analysis of the RES potential	
	High-level techno-economic feasibility	
Main	Retrieve input data about consumption	
"disadvantages"	Risk of confidentiality data for prices/costs	
	Risk of not meaningful output if too many assumptions are required	
Exceptions	I. Maps on the geographical potential can be generated if the available	
	space is not identified	
	II. General productivity of the field can be evaluated if no information	
	about the consumptions are provided	

Page **77** of **78**

5 Conclusions

This deliverable contains the list and description of the scenarios to be provided as an input to the definition of the SO WHAT tool, in parallel and complementary to the definition of use cases. Besides, the methodology followed to obtain, improve and finally generate this list of scenarios and their description is included. Last but not least, the methodology for the selection of scenarios is described as a six stage process to guide the user through the 34 different scenarios so that they can choose to apply the correct simulations that best suit their context and requirements.

Taking into account the expertise of the participants in the task linked to this deliverable (T2.4), a lot of know-how and knowledge have been gathered to define these scenarios, to try to cover most of the different situations that the SO WHAT tool should take into account. Besides, all the technical solutions identified in WP1 have been taken into account, and also tool's workflow and user needs from other WP2 tasks. Information about KPIs (coming from WP3 and WP4) has been considered too and will be detailed in D4.1. This list provides a wide but detailed spectrum of scenarios to be implemented, minor changes are expected to happen within the tool development following the Agile principle.

As explained, the methodology followed to obtain the scenarios begun with a community brainstorming process where a large number of possible scenarios have been created in an unordered process. The next step has been to organize the proposed scenarios to avoid overlaps and to be sure that no scenario was out of the scope of the project. The technologies described in WP1 have been taken into account, because it is useless to propose a waste heat/cold recovery scenario if there is not any mature technology that makes possible this recovery.

Another aspect considered has been the origin of the recovered heat. In this case, it has been decided that the origin of the recovered heat has to be industrial while the destination of the recovered heat can be the same industry itself, another industry or third-party users of a residential, government or service type. Therefore, the possible scenarios for heat recovery with non-industrial origin have been ruled out.

As multiple iterations have been done during the scenario description (the main involved partners described a subset of scenarios, then CAR review them and send its feedback, and this has been done at least twice. Finally, all the scenarios have been reviewed by all the involved partners), all of these descriptions have been reviewed by most of the involved partners to try to avoid prior biases and prejudices.

As stated in the document, an underlying hierarchy has been identified in the list of scenarios, so they have been divided into high and low level scenarios. Low-level scenarios are a kind of "specialisation" of the linked high-level scenario.

All the information obtained in the scope of this task and deliverable will be useful to develop the SO WHAT tool in WP4 as takes into account a lot of expertise and covers most of the real scenarios with which the SO WHAT tool should deal with.

Deliverable 2.6 Scenario Definition

Page **78** of **78**